Schlussbericht

vom 15. Februar 2011

zum Forschungsvorhaben
„Abprallverhalten von Jagdmunition“

zur Bereitstellung einer wissenschaftlichen
Entscheidungshilfe für das Bundesministerium für
Ernährung, Landwirtschaft und Verbraucherschutz
1. Inhaltsverzeichnis

1. Inhaltsverzeichnis .. 2

2. Aufgabenstellung ... 4

3. Verzeichnis verwendeter Formelzeichen 5

4. Versuchsbedingungen .. 7
 4.1 Auswahl und Beschreibung der ausgewählten Geschosse... 7
 4.1.1 Auswahl der Geschosse .. 7
 4.1.2 Beschreibung der Geschosse 9
 4.1.2.1 Das Kegelspitze-Geschoss (KS) 9
 4.1.2.2 Das Nosler Partition-Geschoss (NP) 10
 4.1.2.3 Das Torpedo-Optimal-Geschoss (TOG) 11
 4.1.2.4 Das Barnes TSX-Geschoss 12
 4.1.2.5 Das Reichenberg Geschoss (HDBoH) 13
 4.1.2.6 Das Lapua Naturalis-Geschoss 14
 4.2 Auswahl der Kaliber ... 15
 4.3 Auswahl der Entfernungen 15
 4.4 Auswahl der Beschussmedien 15
 4.4.1 Gebüsch ... 15
 4.4.2 Baumstamm .. 15
 4.4.3 Rückprallversuch .. 16
 4.4.4 Harter Boden .. 16
 4.4.5 Steinplatte ... 16
 4.4.6 Weicher Boden ... 16
 4.5 Abbruchkriterium ... 17
 4.6 Beschusskonzept .. 17
 4.7 Vorrichtungen und Messmittel 17

5. Messeinrichtung .. 18
 5.1 Ermittlung des Auftreffwinkels 18
 5.1.1 Gebüsch .. 18
 5.1.2 Baumstamm ... 19
 5.1.3 Rückprallversuch .. 20
 5.1.4 Harter Boden .. 21
 5.1.5 Steinplatte ... 22
 5.1.6 Weicher Boden ... 22
 5.2 Ermittlung der Auftreffgeschwindigkeit 22
 5.3 Ermittlung der Abgangsgeschwindigkeit 22
 5.4 Ermittlung der Abgangswinkel zur Seite und zur Höhe 23
 5.5 Ermittlung des Raumwinkels 24
 5.6 Rückprall .. 24
 5.7 Geschossrestmasse .. 24
Inhaltsverzeichnis

5.8 Die Messeinrichtung der DEVA ... 25
 5.8.1 Gasdruckmesseinrichtung ... 26
 5.8.2 Lichtschranken ... 27
 5.8.3 Digitale Waage ... 28
 5.8.4 Richtlaser .. 28
 5.8.5 Laserentfernungsmesser ... 29
 5.8.6 Andere Messmittel ... 29

5.9 Die Kalibrierung der Messeinrichtung .. 29
 5.9.1 Mechanisch elektrischer Wandler zur Ermittlung des
 Gasdruckes (Piezo-Quarze) ... 29
 5.9.2 Messanlage zur Ermittlung der Geschossgeschwindigkeiten 29
 5.9.3 Waage .. 29

5.10 Die Messeinrichtung in Meppen .. 30

6. Datenerfassung und -übertragung .. 31

7. Laborierungsdaten .. 33
 7.1 Laborierungsdaten für das Kaliber .243 Win. 33
 7.2 Laborierungsdaten für das Kaliber .308 Win. 33
 7.3 Laborierungsdaten für das Kaliber 9,3x74 R 34

8. Versuchsaufbau .. 35
 8.1 Gebüsch ... 35
 8.2 Baumstamm ... 38
 8.3 Rückpraller .. 42
 8.4 Harter Boden ... 45
 8.5 Steinplatte ... 52
 8.6 Weicher Boden .. 55

9. Ergebnisse ... 58
 9.1 Gebüsch ... 58
 9.2 Baumstamm ... 60
 9.3 Rückpraller .. 73
 9.3.1 Rückpraller am Baumstamm .. 76
 9.3.2 Rückpraller am Stein ... 76
 9.4 Harter Boden ... 82
 9.5 Steinplatte ... 88
 9.6 Weicher Boden .. 96

10. Auswertung und Beurteilung Dr. Kneubuehl 102

11. Zusammenfassung .. 103

12. Literaturverzeichnis ... 104
2. **Aufgabenstellung**

Die Deutsche Versuchs- und Prüf-Anstalt für Jagd- und Sportwaffen e.V. (DEVA) wurde mit der Erstellung einer Studie zum Abprallverhalten bleifreier und bleihaltiger Jagdmunition als wissenschaftliche Entscheidungshilfe für das Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV) beauftragt, nachdem sie im Rahmen einer Ausschreibung den Zuschlag für die Durchführung der Studie erhalten hat.

Die Ergebnisse sollen zur Abschätzung einer eventuellen Gefährdung von Personen durch das Abprallverhalten von Jagdmunition dienen.

Die Studie wird begleitet durch einen von der Bundesanstalt für Landwirtschaft und Ernährung (BLE) eingesetzten Projektrat, bestehend aus einem Vertreter des BMELV und Fachleuten verschiedener Behörden. Ziel dieser Expertengruppe ist es, schwerpunktmäßig bei der Versuchsmethodik Hilfestellungen zu geben.

Als externer Gutachter des Projektes wurde Dr. sc. forens. Dr. med. h.c. Beat Kneubuehl, Dipl.-Math., Abteilungsleiter Zentrum für Forensische Physik/Ballistik, Institut für Rechtsmedizin der Universität Bern, von der BLE beauftragt.

Dr. Kneubuehl soll das wissenschaftliche Konzept der DEVA begutachten und falls erforderlich korrigieren. Neben der gutachterlichen Tätigkeit nimmt er die Auswertung und Interpretation der erhobenen Daten vor.
3. Verzeichnis verwendeter Formelzeichen

<table>
<thead>
<tr>
<th>Maß / Zeichen</th>
<th>Einheit</th>
<th>Definition</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mm</td>
<td>Abstand Messanschlag zur Mantellinie des Baumstammes</td>
<td>Berechnung von R</td>
</tr>
<tr>
<td>B</td>
<td>mm</td>
<td>Abstand in x-Richtung Messanschlag zu (P_B)</td>
<td>Berechnung (x_{nach})</td>
</tr>
<tr>
<td>B</td>
<td>mm</td>
<td>Abstand in x-Richtung Messanschlag zu (P_A) (nur bei „Harter Boden“)</td>
<td>Berechnung (x_{nach})</td>
</tr>
<tr>
<td>C</td>
<td>mm</td>
<td>Abstand in z-Richtung vom Messanschlag zu (P_B)</td>
<td>Berechnung von (s_z)</td>
</tr>
<tr>
<td>D</td>
<td>mm</td>
<td>Drehpunkt der Kiste im Schildzapfen</td>
<td>Bezugs- punkt für Entfernungen</td>
</tr>
<tr>
<td>F</td>
<td>mm</td>
<td>Abstand in x-Richtung Messanschlag zu (P_A) (in Richtung Mündung positiv)</td>
<td>Berechnung (x_{nach})</td>
</tr>
<tr>
<td>DH</td>
<td>mm</td>
<td>Höhenunterschied zur Mündungswaagerechten</td>
<td>Berechnung (a)</td>
</tr>
<tr>
<td>M</td>
<td>ohne</td>
<td>Mündung des Waffenlaufes (Punkt)</td>
<td></td>
</tr>
<tr>
<td>(m_R)</td>
<td>g</td>
<td>Masse des ausgetretenen und aufgefangenen Geschossrestkörpers</td>
<td></td>
</tr>
<tr>
<td>(m_Z)</td>
<td>g</td>
<td>Masse des Geschosses vor dem Schuss</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>mm</td>
<td>Radius des Baumstammes am Prellpunkt</td>
<td></td>
</tr>
<tr>
<td>(s_x)</td>
<td>mm</td>
<td>Spurlänge oder Kugelriss</td>
<td>Abstand (P_A) nach (P_B)</td>
</tr>
<tr>
<td>(s_z)</td>
<td>mm</td>
<td>Spurtiefe im stehenden Baumstamm</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>ohne</td>
<td>Treffer in der Indexwand mit den Koordinaten ((x, y, z))</td>
<td></td>
</tr>
<tr>
<td>(x, y, z)</td>
<td>m oder mm</td>
<td>Koordinaten von (T)</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>ohne</td>
<td>Ursprung oder Bezugspunkt ((0, 0, 0))</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>ohne</td>
<td>Prellpunkt am Beschussmedium ((a, b, c))</td>
<td></td>
</tr>
<tr>
<td>(a, b, c)</td>
<td>mm</td>
<td>Koordinaten von (P)</td>
<td></td>
</tr>
<tr>
<td>Formelzeichen</td>
<td>Beschreibung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_{nach}</td>
<td>mm</td>
<td>Abstand P_A nach T</td>
<td></td>
</tr>
<tr>
<td>x_{vor}</td>
<td>mm</td>
<td>Abstand P_B nach M</td>
<td></td>
</tr>
<tr>
<td>v_R</td>
<td>m/s</td>
<td>Geschwindigkeit des ausgetretenen Geschossrestkörpers ($v_{R_{2.5}}$)</td>
<td></td>
</tr>
<tr>
<td>v_Z</td>
<td>m/s</td>
<td>Geschossengeschwindigkeit vor dem Ziel</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Grad</td>
<td>Auftreffwinkel</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Prom</td>
<td>Höhenwinkel in X-Y Ebene</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>Prom</td>
<td>Seitenwinkel in X-Z Ebene</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>Prom</td>
<td>Ablenkwinkel im Raum im Raum</td>
<td></td>
</tr>
<tr>
<td>E_Z</td>
<td>J</td>
<td>Geschossenergie vor dem Ziel</td>
<td></td>
</tr>
<tr>
<td>E_R</td>
<td>J</td>
<td>Energie des ausgetretenen Geschossrestkörpers</td>
<td></td>
</tr>
<tr>
<td>P_A</td>
<td>ohne</td>
<td>Beginn der Spur</td>
<td></td>
</tr>
<tr>
<td>P_B</td>
<td>ohne</td>
<td>Ende der Spur</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>mm</td>
<td>Strecke U nach P_A</td>
<td></td>
</tr>
<tr>
<td>ϵ</td>
<td>Grad</td>
<td>Fehlerwinkel durch nicht waagerechten Schuss</td>
<td></td>
</tr>
</tbody>
</table>
4. **Versuchsbedingungen**

4.1 **Auswahl und Beschreibung der Geschosse**

4.1.1 **Auswahl der Geschosse**

Um in einem Vergleich bleifreier und bleihaltiger Jagdbüchsen-Geschosse Erkenntnisse über deren Abprallverhalten zu gewinnen, ist es von Bedeutung, die richtige Auswahl zu treffen, vor allem dann, wenn aus Zeitgründen nur insgesamt 6 Geschosse geprüft werden können.

Die Auswahlkriterien müssen folgende Punkte berücksichtigen:

- zu erwartendes Aufprallverhalten, das vom Geschossaufbau abhängig ist,
- Verfügbarkeit in den zu prüfenden Kalibern,
- Häufigkeit der Verwendung.

In enger Zusammenarbeit mit dem wissenschaftlichen Betreuer des Projektes Dr. Beat Kneubuehl wurden folgende Kriterien zur Geschossenauswahl festgelegt:

Bleikern mit dünnem Mantel	Kegelspitz-Geschoss
Bleikern mit dickem Mantel	Torpedo-Optimal-Geschoss
Geschossmantel mit Steg und 2 Bleikernen	Nosler Partition-Geschoss
bleifreies, form- und massestabiles Geschoss	Impala-Geschoss
bleifreies, deformierendes Geschoss	Barnes TSX-Geschoss

Dieser Vorschlag wurde dem Projektrat unterbreitet. Nach eingehender Diskussion einigten sich alle Teilnehmer darauf, aus paritätischen Gründen ein zweites, bleifreies und deformierendes Geschoss mit in die Untersuchung einzufügen. Es handelt sich um das

bleifreies, deformierende Geschoss - Lapua Naturalis-Geschoss.

Des Weiteren hat der Projektbeirat empfohlen, keine Herstellerangaben zu verwenden. Die Geschosse sollen stattdessen eine Geschossbeschreibung und zur Kennzeichnung einen fortlaufenden Buchstaben aus dem Alphabet erhalten. Es zeigte sich jedoch sehr bald, dass diese Vorgehensweise nicht zu halten ist.

Zusammen mit dem Auftraggeber und dem Projektrat wurden die zu prüfenden Geschosse endgültig festgelegt:
Versuchsbedingungen

Geschoss „A“ - Kegelspitz-Geschoss (KS)
Zerlegungsgeschoss mit dünnem Mantel

Geschoss „B“ - Nosler Partition-Geschoss (NP)
Teilzerlegungsgeschoss mit Steg und 2 Bleikernen

Geschoss „C“ - Torpedo-Optimal-Geschoss (TOG)
Deformationsgeschoss mit dickem Mantel

Geschoss „D“ - Barnes TSX-Geschoss
Bleifreies Deformationsgeschoss

Geschoss „E“ - Reichenberg Geschoss (HDBoH)
Bleifreies Teilzerlegungsgeschoss

Geschoss „F“ - Lapua Naturalis-Geschoss
Bleifreies Deformationsgeschoss

Bei den bleihaltigen Geschossen wurden die Bleianteile (Herstellerangaben bis auf das Nosler-Geschoss) an der Gesamtgeschossmasse ermittelt. Sie betragen:

<table>
<thead>
<tr>
<th>Kaliber</th>
<th>Nennmasse</th>
<th>Bleianzahl in %</th>
<th>Mantelmasse</th>
<th>Kernmasse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gramm</td>
<td>Grain</td>
<td>Gramm</td>
<td>Grain</td>
</tr>
<tr>
<td>.243 Win.</td>
<td>6,20</td>
<td>95,68</td>
<td>63,55</td>
<td>3,94</td>
</tr>
<tr>
<td>.308 Win.</td>
<td>10,70</td>
<td>165,12</td>
<td>74,11</td>
<td>7,93</td>
</tr>
<tr>
<td>9,3x74 R</td>
<td>16,00</td>
<td>246,91</td>
<td>69,69</td>
<td>11,15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kaliber</th>
<th>Nennmasse</th>
<th>Bleianzahl in %</th>
<th>Mantelmasse</th>
<th>Kernmasse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gramm</td>
<td>Grain</td>
<td>Gramm</td>
<td>Grain</td>
</tr>
<tr>
<td>.243 Win.</td>
<td>6,16</td>
<td>95,00</td>
<td>50,53</td>
<td>3,11</td>
</tr>
<tr>
<td>.308 Win.</td>
<td>10,70</td>
<td>165,00</td>
<td>44,21</td>
<td>4,73</td>
</tr>
<tr>
<td>9,3x74 R</td>
<td>16,00</td>
<td>247,00</td>
<td>51,44</td>
<td>8,23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kaliber</th>
<th>Nennmasse</th>
<th>Bleianzahl in %</th>
<th>Mantelmasse</th>
<th>Kernmasse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gramm</td>
<td>Grain</td>
<td>Gramm</td>
<td>Grain</td>
</tr>
<tr>
<td>.243 Win.</td>
<td>5,51</td>
<td>85,07</td>
<td>55,64</td>
<td>3,07</td>
</tr>
<tr>
<td>.308 Win.</td>
<td>10,69</td>
<td>165,01</td>
<td>63,10</td>
<td>6,75</td>
</tr>
<tr>
<td>9,3x74 R</td>
<td>18,54</td>
<td>286,17</td>
<td>59,38</td>
<td>11,01</td>
</tr>
</tbody>
</table>

Kegelspitz-Geschoss
(laut Angaben der Firma RUAG Ammotec GmbH)

Torpedo-Optimal-Geschoss
(laut Angaben der Firma Brenneke GmbH)

Nosler Partition-Geschoss
Kerne ausgeschmolzen und Mäntel gewogen (DEVA)
4.1.2 **Beschreibung der Geschosse**

Die bleifreien Geschosse sind aus Kupfer oder Kupferlegierungen.

4.1.2.1 **Das Kegelspitz-Geschoss (KS)**

Geschoss:

Halbschnitt:

Geschosstyp: Zerlegungsgeschoss mit Bleikern
Bleianteil: 74,1% im Kaliber .308 Win.
Geschossproduzent: RUAG Ammotec Fürth
Munitionsproduzent: RUAG Ammotec Fürth, 90765 Fürth
Lieferant: RUAG Ammotec Fürth, 90765 Fürth

Aussagen des Herstellers/Lieferanten zum Geschoss:

- außergewöhnliche Präzision durch langen Geschosszyliner
- kontrollierte Expansion
- hohe Energieabgabe
- geringe Splitterbildung
- Rille im hinteren Geschossbereich stoppt die Deformation und sorgt für einen kompakten Restkörper mit hoher Ausschusswahrscheinlichkeit.
4.1.2.2 Das Nosler Partition-Geschoss (NP)

Geschoss:

Halbschnitt:

Geschosstyp: Teilzerlegungsgeschoss mit zwei Bleikernen
Bleianteil: 63,2% im Kaliber .308 Win.
Geschosshersteller: NORMA PRECISION AB – Schweden
Munitions hersteller: NORMA PRECISION AB – Schweden
Lieferant: Firma Reimer Johannsen, Haart 49, 24534 Neumünster

Aussagen des Herstellers/Lieferanten zum Geschoss:

„Das Nosler Partition hat zwei separate Bleikerne und eine solide Mittelwand. Der vordere Teil expandiert unter gleichzeitig hoher Energieabgabe sehr rasch. Der hintere Teil bleibt auch bei Knochetreffen intakt und stellt die gewünschte Tiefenwirkung sicher. “
4.1.2.3 Das Torpedo-Optimal-Geschoss (TOG)

Geschoss:

Halbschnitt:

Geschosstyp: Deformationsgeschoss
Bleianteil: 44,2 % im Kaliber .308 Win.
Geschoss hersteller: Brenneke GmbH, 30837 Langenhagen
Munitions hersteller: Brenneke GmbH, 30837 Langenhagen
Lieferant: Brenneke GmbH, 30837 Langenhagen

Aussagen des Herstellers/Lieferanten zum Geschoss:

„Jäger, die ein Deformationsgeschoss mit hohem Restgewicht, guter Präzision und Wirkung sowie universelle Verwendbarkeit schätzen, sind mit dem TOG hervorragend ausgerüstet.

Leistungsmerkmale:
- hervorragende Präzision, sehr gute Weitschusseigenschaften
- Starkmantel/Verbundkern
- sehr hohe Durchschlags- und Tötungskraft
- fast immer Ausschuss und sichere Schweissfährt
- geringe Wildbretzerstörung und Hämatombildung
- universelle Verwendung auf alles Wild weltweit
- hohes Restgewicht (ca. 90 %).“
4.1.2.4 Das Barnes TSX-Geschoss

Geschosstyp: bleifreies Deformationsgeschoss
Geschosshersteller: Barnes
Munitions hersteller: Firma Federal (USA)
Lieferant: Firma Reimer Johannsen, Haart 49, 24534 Neumünster

Aussagen des Herstellers/Lieferanten zum Geschoss:

„Dieses Geschoss ist die neueste Entwicklung aus dem Hause Barnes, welches die Vorzüge der Barnes X- Bullets übernahm, dessen Schwachpunkte jedoch ausmerzt.

- Hohe Eindringtiefe mit nahezu 100% Restgewicht
- Neues Design der Hohlspitze für effektivere Aufpilzung auch bei leichtem Schalenwild
- Vier präzise Ringnuten für die Reduzierung des Gasdruckes, der Auflagefläche im Lauf und damit Reduzierung der Ablagerungen (weniger häufiges Grundreinigen der Waffe) sowie eine signifikante Erhöhung der Präzision.“
4.1.2.5 Das Reichenberg-Geschoss (HDBoH)

Geschoss:

Geschosstyp: bleifreies Teilzerlegungsgeschoss
Geschoss hersteller: Reichenberg
Munitions hersteller: Skadi - Helmut Hasl, 92439 Bodenwöhr (gewerblicher Wiederlader)
Lieferant: Skadi - Helmut Hasl, 92439 Bodenwöhr (gewerblicher Wiederlader)

Aussagen des Herstellers/ Lieferanten zum Geschoss:

„HDB Drückjagd- Spezialgeschoss:
4.1.2.6 Das Lapua Naturalis-Geschoss

Geschoss: [image]

Halbschnitt: [image]

Geschosstyp: bleifreies Deformationsgeschoss
Geschoss.hersteller: Lapua
Munitions.hersteller: Nammo Lapua OY – Lapua Finnland
Lieferant: Firma Lapua GmbH, 39204 Schönebeck

Aussagen des Herstellers/ Lieferanten zum Geschoss:

4.2 Auswahl der Kaliber

Die Auswahl der Kaliber richtete sich nach der zur Verfügung stehenden Energie in Zielentfernung. Hier sollte ein breites Spektrum in der jagdlichen Verwendung abgedeckt werden. Nach unseren Vorstellungen sind das die Kaliber:

- .243 Win. mit einer E_0 von ca. 2.500 J
- .308 Win. mit einer E_0 von ca. 3.600 J
- 9,4x74 R mit einer E_0 von ca. 4.500 J.

4.3 Auswahl der Entfernungen

Schalenwild wird in Deutschland bis zu mittleren Schussentfernungen zwischen 80 m und 100 m erlegt. Bei Gesellschaftsjagden sind die Schussentfernungen geringer. Aus diesen Gründen hat der Projektrat die Prüfentfernungen auf 25 m, 50 m und 100 m festgelegt. Damit wurde den realen Bedingungen Rechnung getragen.

4.4 Auswahl der Beschussmedien

4.4.1 Gebüsch

Das Gebüsch wurde mittels Buchenstäben (Durchmesser 6 mm) dargestellt. Diese steckten nebeneinander in einem Holzbalken und zwar in einem Abstand, der sicherstellt, dass das Geschoss immer einen Stab trifft. Die Abstände sind geringfügig kleiner als der jeweilige Geschossdurchmesser.

Die geplante Schusszahl für diesen Versuch betrug 6 - 10 Schüsse pro Kaliber und Geschossstyp.

4.4.2 Baumstamm

Als Beschussmedium wurde die Fichte ausgewählt, weil sie die am häufigsten vertretene Baumart in Deutschland ist. Die Versuchsplanung sah vor, Fichtenabschnitte mit einer Länge von 1,00 m und einem mittleren Durchmesser von 30 cm bis 35 cm zu verwenden. Die Abschnitte werden drehbar befestigt, um sie je nach dem Grad der Zerstörung um 120° oder 180° zu drehen. Die Abschnitte wurden senkrecht und höhenverstellbar aufgestellt. Durch eine seitliche Verschiebemöglichkeit in einer engen Führung konnte so der Auftreffwinkel gegebenenfalls korrigiert werden. Die geplante Schusszahl beträgt 6 - 10 Schüsse pro Kaliber und Geschossstyp.
Versuchsbedingungen

4.4.3 Rückprallversuch

Dieser Versuch sollte klären, ob Geschossreste, die aus dem beschossenen Wildkörper austreten und dann auf Baumstämme oder Steine auftreffen, zu Rückprallern führen. Zur Simulation des Wildkörpers werden Seifenblöcke mit den Abmessungen 25 cm x 25 cm x 40 cm nicht in Längsachse, sondern quer zum Block beschossen. Die geplante Schusszahl betrug 3 Schüsse pro Geschoss und Kombination Seife/Baumstamm und Seife/Granit auf eine Entfernung von 50 m.

4.4.4 Harter Boden

4.4.5 Steinplatte

4.4.6 Weicher Boden

Zur Simulation von Waldboden wurde Mutterboden mit einer 5 cm dicken Humusschicht in eine Kiste mit den Abmessungen 300 cm x 100 cm x 30 cm gepackt. Der restliche Versuchsaufbau war wie beim „Harten Boden“. Auch hier wurden beschädigte Stellen sofort ausgebessert. Die geplante Schusszahl betrug 6 - 10 Schüsse pro Kaliber und Geschossstyp.
4.5 Abbruchkriterium

Dr. Kneubuehl regte an, folgendes Kriterium zum Abprall eines Geschosses für diesen Versuch festzuschreiben:

Definition eines Abprallers:

Ein Geschossrest wird als Abpraller bezeichnet, wenn er mehr als 50% der Masse des Ausgangsgeschosses besitzt.

Die Versuche für einen Geschosstyp werden beendet, wenn nach dem Aufprall auf das Beschussmedium eine Geschossrestmasse von weniger als die Hälfte seiner ursprünglichen Masse vorhanden ist.

4.6 Beschusskonzept

Der Beschuss der Medien erfolgte in der 50-m-Raumschießanlage (im Folgenden RSA genannt) der DEVA mittels einer Schießmaschine auf eine Entfernung von ca. 40 m. Die Munition wurde so laboriert, dass bei dieser Entfernung die realen Geschosseschwindigkeiten von 25 m, 50 m und 100 m erreicht wurden.

4.7 Vorrichtungen und Messmittel

Zur Durchführung der Versuche sind die Verwendung nachstehender Messmittel und der Bau folgender Vorrichtungen vorgesehen:

1. Wiederladeeinrichtung zur Herstellung der Munition
2. Gasdruckmesserung
3. Lichtschranken
4. Radargerät
5. Wattekästen zum Auffangen der Geschosse
6. Laserentfernungsmesser (Auflösung 1 mm)
7. Richtlaser zum Justieren der Schießmaschine und Beschussmedien
8. Dreibein-Holzböcke für Baumstämme
9. Aufnahme für die Buchenstäbe
10. Holzkiste für die Beschussmedien „Harter Boden“ und „Steinplatte“
11. Holzkiste für Beschussmedium „Weicher Boden“
12. Schwenkvorrichtung (Wiege) für die Holzkisten zur Einstellung der Beschusswinkel
13. Scharniere für die Kisten
14. Stützen zur Einstellung des Auftreffwinkels
15. Indikatorwand für das Registrieren der abgelenkten Geschosse
16. Seifenblöcke zur Simulation eines Wildkörpers
5. Messeinrichtung

Für eine umfassend Auswertung war es erforderlich, dass folgende Daten erfasst wurden:

- Auftreffwinkel
- Auftreffgeschwindigkeit
- Abgangsgeschwindigkeit
- Abgangswinkel zur Seite und zur Höhe
- Raumwinkel
- Geschossrestmasse
- Rückpraller

5.1 Ermittlung des Auftreffwinkels

5.1.1 Gebüsch

Durch den senkrechten Beschuss der Buchenstäbe war eine Bestimmung des Auftreffwinkels nicht erforderlich.

Um messtechnisch erfassbare und nachvollziehbare Werte zu bekommen, haben wir am Gebüsch folgende Trefferkategorien festgelegt:

Kategorie 1:

Am Buchenstab beschädigte das Geschoss 0 % bis 25 % des Durchmessers.
Kategorie 2:

Am Buchenstab beschädigte das Geschoss 25 % bis 50 % des Durchmessers.

Kategorie 3:

Am Buchenstab beschädigte das Geschoss über 50 % des Durchmessers.

Kategorie 4:

In diese Kategorie sind Geschosse eingereiht worden, die zwei Stäbe berührt haben.

Zur Auswertung sind die Kategorien 1 und 2 herangezogen worden.

Die Tiefe der Beschädigung im Buchenstab ist mit einem digitalen Messschieber festgestellt worden.

5.1.2 Baumstamm

Trifft ein Geschoss auf eine kreisförmige Kontur auf, so kann der Auftreffwinkel über mehrere Möglichkeiten bestimmt werden. Wir haben uns für folgende Variante entschieden:

Zum Beispiel:
- Messpunkt 1: 135 mm
- Messpunkt 2: 140 mm

Daraus ergab sich der Radius des Baumes:
Abstand Bezugs Ebene ./. Messpunkt 1 = Radius des Baumstammes
300 mm ./. 35 mm = 165 mm

und die Spurtiefe:
Messpunkt 2 ./. Messpunkt 1 = Spurtiefe
140 mm ./. 135mm = 5 mm

Da der Winkel im Zentrum des Baumstammes (siehe Skizze) gleich dem Auftreffwinkel ist, ergab sich:

$$\cos \alpha = \frac{\text{Radius} - \text{Spurtiefe}}{\text{Radius}}$$

5.1.3 Rückpraller

Für die Versuche musste immer senkrecht (im Winkel von 90°) auf den Seifenblock geschossen werden.
5.1.4. **Harter Boden**

Beim Versuchsaufbau „Harter Boden“ stellte es sich heraus, dass wir aus Gründen der Effektivität nicht immer im Bereich des Drehpunktes schießen konnten. Damit nicht nach jedem dritten Schuss der Auftreffpunkt im Bereich der Drehachse der Kiste wiederhergestellt werden musste, entschlossen wir uns, auch oberhalb und unterhalb der Achse die Schüsse zu platzieren. Das machte eine andere Berechnungsvariante notwendig. Das folgende Bild verdeutlicht den mathematischen Hintergrund:

Für die Berechnung des tatsächlichen Auftreffwinkels \(\alpha \) gilt das obere schiefwinklige Dreieck, wenn der Spuranfang oberhalb des Drehpunktes liegt:

\[
c = \sqrt{a^2 + b^2 - 2ab \cdot \cos \gamma}
\]

und

\[
\alpha_{tats.} = \arcsin \frac{a \cdot \sin \gamma}{c}
\]

Für die Berechnung des tatsächlichen Auftreffwinkels \(\alpha \) gilt das untere schiefwinklige Dreieck, wenn der Spuranfang unterhalb des Drehpunktes liegt:

\[
a = \sqrt{b^2 + c^2 - 2bc \cdot \cos \alpha}
\]
Messeinrichtung

\[\alpha_{tats.} = \arcsin \left(\frac{c \cdot \sin \alpha}{a} \right) \]

5.1.5 Steinplatte

Für den Versuch Steinplatte wurde die Platte selbst gedreht, um so den notwendigen Auftreffwinkel zu erzielen.

5.1.6 Weicher Boden

5.2 Ermittlung der Auftreffgeschwindigkeit

Die Auftreffgeschwindigkeit wurde bei allen Versuchen, außer beim „Harten Boden“ mittels Lichtschrankentechnik (Messstrecke: 1,00 m) vorgenommen. In Meppen stand Radartechnik zur Verfügung. Hier wäre ein zusätzlicher Aufbau der Lichtschranken für die Radarmessung hinderlich gewesen.

5.3 Ermittlung der Abgangsgeschwindigkeit

5.4 Ermittlung der Abgangswinkel zur Seite und zur Höhe

Der rote Pfeil zeigt den Nullpunkt an, der grüne die ersten Ablagen bei einem Winkel von 2,5° beim Beschießen der Steinplatte.

Die Abstände wurden mit dem Messschieber, einem 2-m-Maß (Zollstock) oder mittels 1-m-Schullineal vermessen. Für den senkrechten Abstand wurde ein Dreieck benutzt, das wir an der waagerechten Nulllinie anlegten.

Die ermittelten Koordinaten sind im angelegten Excel-Datenblatt sofort in entsprechende Winkel umgerechnet worden. Die Maßeinheit des Winkels sind Promille (prom.).

- Umrechnung der Einheiten: 360° entsprechen 6.400 prom.
- Die Ablage in der Höhe (in y-Richtung) ergab über die Winkelfunktion „Tangens“ den Höhenwinkel \(\beta \).
- Die Ablage zur Seite (in z-Richtung) ergab ebenfalls über den „Tangens“ den Seitenwinkel \(\gamma \).
5.5 Ermittlung des Raumwinkels

Aus dem Höhen- und dem Seitenwinkel kann mathematisch der Raumwinkel λ berechnet werden. Die Funktion lautet wie folgt:

$$\lambda = \arccos(\cos \alpha \cdot \cos \beta \cdot \cos \gamma - \sin \alpha \cdot \sin \beta)$$

Auch diese Funktion war im Excel-Datenblatt integriert.

5.6 Rückpraller

Für die Versuchsreihe „Rückpraller“ gingen wir zuerst davon aus, dass auch die Austrittsgeschwindigkeit des Geschosses aus der Seife zu ermitteln sei, um eine Aussage darüber treffen zu können, wie viel Energie das Geschoss im durch Seife simulierten Wildkörper abgibt und welche ihm noch am Rückprallobjekt zur Verfügung steht. Nachdem es bei einigen Geschossen offensichtlich war, die Rückprallobjekte nach dem Seifendurchgang nur mit unverhältnismäßig hohem Aufwand zu treffen, nahmen wir nach Rücksprache mit Dr. Kneubuehl die Lichtschanke zur Abgangsgeschwindigkeitsermittlung aus dem Versuchsaufbau heraus und verkürzten alle Abstände nach Seifendurchgang auf einen halben Meter.

5.7 Geschossrestmasse

5.8 Die Messeinrichtung der DEVA

Um belastbare Ergebnisse zu erzielen, ist eine störungsfrei arbeitende Messtechnik notwendig. In der ersten Sitzung des Projektrates ist nach der Vorstellung unserer Messgeräte von den Teilnehmern bestätigt worden, dass diese Technik ausreichend für die Ermittlung aller erforderlichen Daten sei. Im Einzelnen sind dies:

- Gasdruckmesseinrichtung
- Lichtschranken
- Waage (digital)
- Richtlaser
- Laserentfernungsmesser
- Messschieber (digital)
- Schullineal (1,00 m)
- Anschlagwinkel
- Gliedermaßstab (2,00 m)

5.8.1 Gasdruckmesseinrichtung

Schießbock mit aufgesetztem Munitonsprüfgerät (roter Pfeil)
Der eingesetzte Quarz ist durch den blauen Pfeil gekennzeichnet, der Lauf mit dem grünen Pfeil.

Alle Läufe, die zu den Versuchen verwendet wurden, sind Gasdruckmessläufe. Alle Maße an den Läufen entsprechen den Vorgaben der C.I.P., da sie ansonsten nicht zur Messung des Gasdruckes eingesetzt werden dürften. Die Präzision der verwendeten Läufe ist sehr gut. Es wurden Streukreise von ca. 1 cm (5 Schüsse) auf 50 m erzielt.

5.8.2 Lichtschranken

Die verwendeten Lichtschranken haben unterschiedliche Messbasen. Die Eingangslichtschranke weist eine Messbasis von 1,00 m und die Ausgangslichtschranke eine von 0,25 m auf. Die verkürzte Strecke wurde für die Ermittlung der Abgangsgeschwindigkeit gewählt, weil die Projektil häufig nicht in einem Winkel von 90° zur Messeinrichtung fliegen. Einerseits war es uns dadurch möglich, die meisten Geschosse mess-technisch zu erfassen und zum anderen wurde dadurch die Lichtschranke nicht selbst in Mitleidensschaft gezogen. Im Bild ist die Lichtschranke mit der Messbasis von 1,00 m. Zum Splitterschutz haben wir meist vor die Messtechnik noch einen Holzrahmen montiert.
5.8.3 Digitale Waage

5.8.4 Richtlaser

5.8.5 Laserentfernungsmesser

Zur Bestimmung aller Distanzen setzten wir einen Laserentfernungsmesser ein, der mit einer Auflösung von 1 mm ausgestattet ist. Alle Angaben waren so millimetergenau möglich.

5.8.6 Andere Messmittel

Im nahezu täglichen Einsatz, insbesondere um die Ablagen der Projektille zur Seite und zur Höhe festzustellen, wurden digitale Messschieber, ein Schullineal mit einer Länge von 1,00 m, ein Anschlagwinkel und Gliedermaßstäbe verwendet.

5.9 Die Kalibrierung der Messeinrichtungen

5.9.1 Mechanisch elektrische Wandler zur Ermittlung des Gasdruckes (Piezo-Quarze)

Um sicher zu stellen, dass die Gasdruckmessungen nicht fehlerhaft sind, wurden zwei Quarze (Kistler Nr. 1333982 und Nr. 971377) zur Wehrtechnischen Dienststelle für Waffen und Munition - WTD 91 -500 (im Folgenden WTD 91 genannt) nach Meppen geschickt, um diese im zertifizierten Prüflabor kalibrieren zu lassen.

Es ist festgestellt worden, dass beide Druckaufnehmer den Anforderungen entsprechen. Die Protokolle befinden sich in der Anlage.

5.9.2 Messanlage zur Ermittlung der Geschossgeschwindigkeiten

Unsere Lichtschranken wurden ebenfalls in Meppen einer Prüfung unterzogen. Die festgestellten Differenzen zur Referenzanlage bewegen sich in einem Bereich von

\[+0,08\% \text{ bis } -0,09\% \]

Diese Differenz bedeutet, dass die Geschwindigkeitswerte um nicht mal 0,7 m/s gegenüber der Referenzanlage abweichen. Die Prüfscheine befinden sich in der Anlage.

5.9.3 Waage

Es wurde stets darauf geachtet, dass die Waage auf ebener und sauberer Fläche stand und vor Beginn der Versuche wurde sie täglich mittels Vergleichsmasse kalibriert.
5.10 Die Messeinrichtung in Meppen

Messgerät: Doppler-System Weibel W 700
Antenne: Weibel SL 3022 (Antennenfrequenz 10.525 GHz)
Mündungsblitzdetektor: FOT 2E

Das Auslösen der Messung wurde extern mit infrarot-sensiblen Fotodetektor über die erste Lichterscheinung an der Waffenmündung ausgelöst. Das Protokoll befindet sich im Anhang.
6. Datenerfassung und -übertragung

Um alle ermittelten Daten fehlerfrei und ohne lange Zwischenwege speichern zu können, musste in den Bereichen, in denen Daten ermittelt werden, Computertechnik zur Verfügung stehen. Hauptsächlich waren das:

- der Schießraum und
- der Bereich mit dem Zielmedium.

Im Schießraum war der Computer direkt neben dem Schießbock. Hier wurden alle Geschwindigkeitsmesswerte erfasst.

Gleich gegenüber befand sich die Wiederladeeinrichtung mit digitaler Waage, mit der die Geschossmassen vor und nach dem Schuss ermittelt werden konnten. Auch diese Daten gelangten ohne Umwege zur digitalen Speicherung.
Auch im Bereich des Beschussmediums war eine schnelle und verlustfreie Erfassung aller Daten notwendig. So befand sich ein PC in unmittelbarer Nähe der zu prüfenden Medien. Ein Mitarbeiter hat sofort das Geschoss gesucht. Ein anderer ermittelte die Ablagen in Höhe und Seite an der Indikatorwand sowie weiterer relevanter Daten und hat diese dann sofort in den daneben stehenden Computer eingegeben.

Alle Computer sind über ein Netzwerk miteinander verbunden. Eine Datensicherung erfolgte automatisch an jedem Tag.

Diese Vorgehensweise verhinderte über den gesamten Verlauf des Forschungsvorhabens einen Datenverlust.
7. Laborierungsdaten

7.1 Laborierungsdaten für das Kaliber .243 Win.

Im Kaliber .243 Win. wurde nur in ausgewählten Bereichen geschossen. So sind folgende Beschussmedien mit obigem Kaliber ausgewählt worden:

- Gebüsch
- Baumstamm
- Harter Boden
- Steinplatte
- Weicher Boden

In diesem Versuchsteil kam nur die Entfernung von 50 m zum Tragen. Alle vorliegenden Fabriklaborierungen wurden vorher mit ihrer Geschwindigkeit erfasst und original verwendet. Aus diesem Grund mussten keine zusätzlichen Laborierungsdaten ermittelt werden.

7.2 Laborierungsdaten für das Kaliber .308 Win.

Das Kaliber .308 Win. war das bestimmende in unseren Versuchen. Es musste immer bis zum Abbruchkriterium voll durchgeschossen werden. Das hieß, dass für alle Geschosse und alle Entfernungen die Laborierungen hinsichtlich der Geschossge- schwindigkeit für die nachfolgenden Medien angepasst wurden:

- Gebüsch
- Baumstamm
- Rückpraller
- Harter Boden
- Steinplatte
- Weicher Boden

Soweit es möglich war, setzten wir bei der Entfernung 50 m die Originalpatronen für die Versuche ein.

Die ermittelten Ladedaten befinden sich im Anhang.
7.3 Laborierungsdaten für das Kaliber 9,3x74R

Im Kaliber 9,3x74 R wurde nur in ausgewählten Bereichen geschossen. So sind folgende Beschussmedien mit obigem Kaliber ausgewählt worden:

- Gebüsch
- Baumstamm
- Harter Boden
- Steinplatte
- Weicher Boden

In diesem Versuchsteil kam nur die Entfernung von 50 m zum Tragen. Alle vorliegenden Fabriklaborierungen wurden vorher mit ihrer Geschwindigkeit erfasst und original verwendet. Aus diesem Grund mussten keine zusätzlichen Laborierungsdaten ermittelt werden.
8. Versuchsaufbau

8.1 Gebüsch

Das Gebüsch wurde mittels Buchenstäben (Ø 6 mm) dargestellt. Diese steckten nebeneinander in Balken. Die Abstände zwischen den einzelnen Buchenstäben waren so gewählt, dass immer gewährleistet werden konnte, dass die Geschosse der unterschiedlichen Kaliber mindestens einen Stab trafen.

Um eine größtmögliche Präzision der Bohrungen zu bekommen, wurden die Bohrungen auf einer mit digitaler Anzeige ausgestatteten Universalfräsmaschine eingearbeitet. Folgende Abstände der Mittelpunkte der Bohrungen ergaben sich in den einzelnen Kalibern:

- Kaliber .243 Win. - 12 mm
- Kaliber .308 Win. - 14 mm
- Kaliber 9,3x74 R - 18 mm

Der gebohrte und mit Buchenstäben versehene Balken wurde auf einem stabilen Gestell so befestigt, dass eine seitliche Verschiebung gewährleistet werden konnte. Diese diente dazu, um bei notwendigen Korrekturen der Treffpunktlage reagieren zu können und um die Buchenstäbe in der Höhe so auszurichten, dass der Schuss ohne Winkelfehler waagerecht abgegeben werden konnte.

Aufnahme der Buchenstäbe im Holzbalken und massives Gestell

Nun konnte der Messaufbau vorgenommen werden. Da in der RSA nur eine Entfernung von 50 m zur Verfügung steht, ergab sich folgende Versuchsanordnung für das Beschussmedium „Gebüsch“:
Auf Grund der waagerechten Positionierung der Waffe konnte bei allen Versuchen von einer Abschusshöhe von 1,25 m ausgegangen werden. Die Entfernungen wurden mit einem Laserentfernungsmesser millimetergenau erfasst.

Auf Grund der geringen Ablenkung konnten die Kistenmaße auf 600 mm x 600 mm x 300 mm beim Beschussmedium „Gebüsch“ beschränkt werden.

8.2 Baumstamm

Da ein Stamm in der Natur aber nicht kreisrund ist, musste eine Möglichkeit geschaffen werden, ihn mittig anzubohren. Eigens dafür wurde ein Anschlagwinkel geschweißt, der bei dreimaligem Anlegen und Anzeichnen einen Schnittpunkt für die Bohrung am Fuß des Stammes ergab.
Nach dem Anriss konnte mittig mit einem 20 mm-Bohrer ein Loch gebohrt werden, das als Aufnahme des Baumstammes auf einer speziell angefertigten Vorrichtung diente. Der Hintergrund für das aufrechte Beschießen des Stammes war zum einen in seiner natürlichen Lage und zum anderen in der nachfolgend besser erfassbaren Ablenkung zu sehen.

Stahlplatte mit Aufnahmebolzen und senkrechtem Anschlag zur Erfassung des Stammdurchmessers und des Einschlagpunktes des Geschosses am Baumstamm.

Auf die Vorrichtung aufgesetzter Stamm und angelegtem Messschieber mit Tiefenmaß (s. Pfeil). Es wurde zwischen Stamm und Anschlag hindurchgeschossen.
Das Erfassen der Werte war so präzise vom Anschlag aus möglich.

Um den Stamm auf Schusshöhe zu bringen und um ihn in drei Ebenen nutzen zu können, mussten 3 Böcke unterschiedlicher Höhe gebaut werden.
Auch in diesem Versuch wurde aus dem waagerecht stehenden Lauf der Schießmaschine geschossen. Die Entfernung zur Lichtschranke 2 musste wegen größerer zu erwartender Ablenkung auf 1,00 m verkleinert werden, damit die Geschosse auch durch den Messrahmen fliegen und nicht seitlich austreten.

Unterschiede zwischen den Beschussmedien „Gebüsch“ und „Baumstamm“:
- Reduktion des Abstandes vom Beschussmedium zur Indikatorwand
- Grund: Erwartung größerer Ablenkung
- Vergrößerung der Wattekisten von 0,6 m x 0,6 m auf 1,0 m x 1,0 m
- Festlegung der Schusswinkel von 10°, 15°, 25°, 45° und 90°
- (2,5° und 5° fallen raus, 45° und 90° werden mit geschossen
8.3 Rückpraller

Im Rückprallversuch musste untersucht werden, ob und wie weit Geschosse nach dem Durchdringen eines Wildkörpers und nachfolgendem Auftreffen auf ein Prallmedium in Richtung des Schützen zurückprallen. Als Rückprallmedien dienten hier der Baumstamm und der Granitblock. Es wurden Baumstäme wie aus vorheriger Untersuchung verwendet. Als Granitblock standen Blockstufen aus dem Baumarkt zur Verfügung. Die Abmaße waren: 500 mm x 350 mm x 150 mm mit einer Masse von je 50 kg.

Der Wildkörper ist durch einen Seifenblock simuliert worden. Seine Maße waren wie folgt: 200 mm x 250 mm x 250 mm. Es war festgelegt, dass der Seifenblock in der 250er Länge geschossen werden sollte.

Um Koordinaten der rückprallenden Geschosse zu ermitteln, musste der gesamte Rückprallaufbau mit einer Einhausung nach vorne und zur Seite versehen werden.

Damit machte sich auch ein Hilfskoordinatensystem erforderlich, um die Rückpraller eindeutig zu erfassen. Nach dem Schießen der Nulllinie wurde der Granitblock in die Schießebene eingerückt und der Nullpunkt mittels Laser übertragen. In den folgenden Bildern ist die technische Umsetzung erläutert:
Die Indikatorwand erhielt auf der Innenseite das bislang verwendete Koordinatenkoordinatensystem \((x; y; z)\) und das Rückprallmedium das Hilfskoordinatensystem \((a; b; c)\).

Es wurden beim Schuss beide Treffpunkte tabellarisch erfasst, sowohl der Treffer am Stein/ Baumstamm als auch der Treffer auf der Indikatorwand.

Auf den Block übertragenes Koordinatensystem und einige Treffer.
In einer ersten Versuchsanordnung waren wir davon ausgegangen, dass auch die Ermittlung der Austrittsgeschwindigkeit des Geschosses nach Durchdringung der Seife erforderlich sei. Deshalb wählten wir zwischen Seife und Indikatorwand einen Abstand von 1,00 m. In der gleichen Distanz war auch das Rückprallmedium von der Indikatorwand entfernt. Während der Versuche stellte es sich aber heraus, dass einige Geschosse durch die Seife schon so viel Ablenkung erfahren hatten, dass das dahinter liegende Rückprallmedium nicht getroffen werden konnte. Nach Rücksprache mit Dr. Kneubuehl nahmen wir die zweite Lichtschanke heraus und verkürzten die Abstände von Seife zur Indikatorwand und von Indikatorwand zum Rückprallmedium auf 0,5 m.
In der Folge war es möglich, dass die aus dem Seifenblock ausgetretenen Geschosse den Granitblock und auch den Baumstamm trafen.

Bevor der Versuch durchgeführt werden konnte, wurde trotzdem der Feuchtigkeitsgehalt überprüft, indem wir mit einem Luftgewehr ein Diabolo auf den Seifenblock abfeuerten. Das Diabolo muss eine Mündungsgeschwindigkeit von 300 m/s erreichen und in die Seife 90 mm bis 100 mm eindringen. Beide Bedingungen konnten erfüllt werden.

8.4 Harter Boden

Der „Harte Boden“ beziehungsweise „Naturweg“ stellte an uns die größten Anforderungen bei der Bewältigung dieses Forschungsvorhabens. Es musste ein Weg im Jagdrevier nachgebildet werden, der sich zudem auch noch unter verschiedenen Winkeln beschließen ließ. Nach einigen Überlegungen konstruierten wir eine Kiste mit folgenden Abmessungen:

Länge - 2,50 m
Breite - 1,00 m
Höhe - 0,30 m

Durch weiteres Befüllen bis ca. 10 cm unter der Oberkante, der Zugabe von Wasser und der fortwährenden Verfestigung konnte schon nach einem Monat ein straßenähnlicher Zustand erreicht werden.

Damit hatte die Kiste eine Masse von über 3.000 kg erreicht.

Ein weiteres Problem war die Einstellung des Auftreffwinkels. Dafür gibt es zwei Möglichkeiten:

- die Neigung der Schießmaschine und deren Abstand zum Beschussmedium zu verändern oder
- die gesamte Kiste bei konstanter Schussentfernung zu neigen.

Wir entschieden uns für letzteres, weil sich die Schießmaschine nicht bis in den Bereich von 25° verstellen ließ. Um die Kiste aufzunehmen, wurde eine so genannte „Wiege“, deren Halterungen und die Stützen konstruiert und gebaut. Die zeichnerische Lösung sah wie folgt aus:
Nach umfangreichen Metall- und Schweißarbeiten waren alle Hilfsmittel zur Befestigung der Kiste hergestellt.

Wiege

Die Stützen (hinten) dienten zur Einstellung der Schusswinkel 2,5°, 5°, 10°, 15° und 25°. Die davor stehenden „Scharniere“ (Pfeile) ermöglichen die Neigung der Kiste und deren Aufnahme in der Wiege.

Eine Ladefläche von 25 m² war gerade ausreichend für die benötigte Ausrüstung.

In Meppen stand zum Entladen entsprechende Technik bereit.

Nach dem Transport in den Schießbereich begannen wir mit dem Aufbau. Der 600 m lange und 10 m hohe Schießkanal gestattete eine ideale Anordnung der Versuchs-technik.
Die großzügigen räumlichen Möglichkeiten in der 600-m-RSA der WTD 91 in Meppen ermöglichten einen idealen Versuchsaufbau zum Beschuss des „Harter Boden“. Die Höhe des Laufes der Schießmaschine und der Drehpunkt der Kiste stimmten mit 1,25 m überein, so dass beim Schießen auf die Nulllinie der Auftreffwinkel dem eingestellten Winkel der Kiste entsprach. Bei höherem oder tieferem Auftreffpunkt wurde der Winkel im Datenblatt jeweils neu berechnet.
Die Radartechnik und das Personal wurden durch die WTD 91 gestellt. Der Abschlussbereich war für die Bedienung mittels Panzerplatten gesichert. Unsere Messtechnik befand sich im Container hinter dem Radargerät.

Um unsere Lichtschränkentechnik zu überprüfen, wurden beim Winkel von 5° die Geschwindigkeitsmessungen parallel mit dem Radar durchgeführt. Es wurde eine sehr gute Übereinstimmung mit beiden Messtechniken erzielt.

So konnte für das Forschungsvorhaben sichergestellt werden, dass alle radartechnisch erfassten Werte, mit denen der bei anderen Versuchen verwendeten Lichtschrägentechnik übereinstimmten.
Beim Schießen ergaben sich weitere Probleme, für die Lösungen gefunden werden mussten. Mit der Vergrößerung des Auftreffwinkels vergrößerten sich auch die Abgangswinkel der Geschossreste. Schon bei einer Entfernung von 3,00 m vom Auftreffpunkt zur Indikatorwand ergaben sich Ablagehöhen von 3,00 m.

Ein Mitarbeiter zeigt mit einem „Zollstock“ auf die Höhen- und Seitenablage eines Geschossrestes. Jede Pappe war im Format 1,00 m x 1,00 m. Danach wurde noch eine weitere Lage Pappe darüber befestigt.

Für die Wertung eines Schusses war es aber auch erforderlich, die Geschossreste zu finden. Mit Hilfskonstruktionen konnten die Wattekisten immer höher positioniert werden. Aber auf Grund einer nicht vorhersehbaren Ablage der Geschosse zur Seite und zur Höhe, konnte eine große Anzahl nicht gefunden werden. Mit Hilfe von 12 Woldecken, die zudem in doppelter Lage hinter der Indikatorwand platziert wurden, war es uns wieder möglich, die Geschossreste aufzufangen, damit die Messung gewertet werden konnte.

Die Geschossfangkästen sind in Abgangsrichtung der Geschosse positioniert.
Die Decken wurden in einer Höhe von mehr als 3,00 m in doppelter Lage aufgehängt. Dahinter standen die Wattekästen. Die Gesamtarbeitshöhe betrug zu diesem Zeitpunkt schon mehr als 4,00 m!

8.5 Steinplatte

In ersten Überlegungen wählten wir für den naturnahen Beschuss von Steinplatten so genannte „Polygonalplatten“ aus, die im Baumarkt für die Gestaltung von Gartenwegen oder Terrassen Verwendung finden. Nach eingehender Begutachtung war klar, dass diese wegen ihrer geringen Materialstärke nicht den Belastungen eines Beschusses standhalten würden. So entschieden wir uns für Granitplatten, die auf einer Seite geschliffen und auf der anderen Seite „geflammt“ sind (raue Oberfläche). Diese Seite wurde dann im Versuch beschossen. Die Plattendicke von 600 mm x 300 mm x 30 mm trug dazu bei, dass auch bei kleinen Auftreffwinkeln die Platte getroffen werden konnte.

Da unsere RSA nur eine Höhe von 2,65 m hat, musste eine Vorrichtung zur Aufnahme der Platte geschaffen werden, die ein wiederholgenaues Positionieren, das Einstellen des Winkels und eine variable Auflagenhöhe erlaubte. Der Drehpunkt war durch ein Lot von der Decke als Fixpunkt eingerichtet, so dass nur der Aufnahme balken zur Winkeländerung greifen durfte. Da bei dem Winkel von 2,5° die mögliche Zielhöhe bei einer Platte sehr gering war (26,2 mm), haben wir 2 Platten in Reihe positioniert. Dadurch stellten wir sicher, dass das Geschoss immer die Steinplatte treffen konnte.

Der Lauf der Schießmaschine wurde wieder waagerecht auf eine Höhe von 1,25 m ausgerichtet.
Da wir mit erheblichen Ablenkungen rechnen mussten, wurde die gesamte Technik linksseitig auf der RSA positioniert, um bei großen Abgangswinkeln die Geschosse noch auffangen zu können. Im Bild ist auch die schräge Anordnung der Geschossfangkästen zu sehen, die schon in Abgangsrichtung positioniert waren und der Laser (Pfeil oben, roter Strich), der mit sehr großer Genauigkeit den zukünftigen Auftreffpunkt anzeigt.

Durch Drehung der Steinplatte, das Unterlegen von Konstruktionsholz und das Verschieben in Längsrichtung war es möglich, die Steinplatte mehrfach zu beschießen.

Um ein Gefühl für die wirkenden Energien zu bekommen, beschossen wir in einem ersten Versuch eine 10 cm starke Granitplatte frontal mit dem Kaliber 9,3x74 R. Schon dabei riss die Platte. Bei einem weiteren Schuss zerlegte sie sich in mehrere Stücke. Trotzdem entschieden wir uns für die 3 cm dicke Granitplatte, weil wir diese lediglich unter kleinen Winkeln beschossen. Sollte es dennoch zu Problemen und permanentem Zersplittern der Platten kommen, würden wir diese entweder mit einer zweiten Platte unterstützen oder durch den Granitblock aus dem Rückprallversuch ersetzen.

Nachfolgend ist der Versuchsaufbau beim Beschussmedium „Steinplatte“ dargestellt.
Im Bild ist nicht das senkrechte Lot zu sehen, das sich im Mittelpunkt der Platte befand. Dieser Punkt war der Nullpunkt für alle Maße und der Drehpunkt der Platte für alle Winkeleinstellungen. Auf diese Ebene wurde auch die Schießmaschine ausgerichtet. Somit war gewährleistet, dass keine zusätzlichen Winkel beachtet und in die Berechnung des Auftreffwinkels einfließen mussten.
8.6 Weicher Boden

Der Versuchsaufbau „Weicher Boden“ sollte grundsätzlich dem Versuchsaufbau „Harter Boden“ entsprechen. Lediglich die Kiste zur Aufnahme dieses Beschussmediums wurde auf Anraten von Dr. Kneubuehl von 2,50 m auf 3,00 m vergrößert, weil dieser mit einer „längeren Spur“ rechnete. Da handelsüblich nur Spanplatten mit einer Länge von 2,50 m zur Verfügung standen, mussten die restlichen 50 cm mit einer zusätzlichen Verstärkung durch innen liegende Dachlatten befestigt werden. Ebenso wie beim Versuch „Harter Boden“ war davon auszugehen, dass der einzufüllende Erdboden eine beträchtliche Masse hat.

Der Pfeil kennzeichnet die Verbindungsstelle. Schon bald darauf konnte mit dem Befüllen und Verfestigen begonnen werden. Es wurde schichtweise der Mutterboden aufgefüllt und mittels geringer Menge Wasser bis knapp unter den Rand der Kiste verfestigt. In der Kiste waren bis dahin 1,5 Tonnen Mutterboden eingefüllt.

Die letzten 5 - 8 cm waren für eine lockere Laubschicht vorgesehen.
Die Versuche in Meppen haben gezeigt, dass für das Beschießen der Medien in der Wiege und darin eingebauter Kiste eine Raumhöhe von mehr als 4,00 m notwendig ist, um die abgelenkten Geschosse auch sicher fangen zu können. In der RSA standen uns aber nur 2,65 m zur Verfügung. Deshalb stellten wir die Kiste auf den Fußboden und neigten diese durch Unterlegen von Holzbalken. Ebenso wurde der Lauf des Beschussbockes um 1° zum Boden hin geneigt. Der Auftreffwinkel des Geschosses (zum Beispiel 15°) ergab sich somit aus dem Neigungswinkel der Kiste und des Laufes am Beschussbock (14° + 1°).

Die Eingangslichtschranke stand auf dem Fußboden, dahinter kamen die Kiste mit dem „Weichen Boden“, die Ausgangslichtschranke und die Indikatorwand mit den Wattlekästen.
Durch die begrenzte Raumhöhe unserer RSA musste während der Versuche die Anordnung gelegentlich im Bereich der Entfernung von der Schießmaschine zum Drehpunkt der Beschusskiste und zur Indikatorwand korrigiert werden. Alle Änderungen sind in den jeweiligen Messprotokollen vermerkt und bei den nachfolgenden Rechnungen berücksichtigt.
9. Ergebnisse

Im Folgenden werden die Ergebnisse dargestellt, die die DEVA während der Untersuchung in Text-, Tabellen- und Bildform gemacht hat. Sie stellen die vorbereitenden Bausteine für die Auswertung des Forschungsvorhabens durch den wissenschaftlichen Betreuer Dr. Beat Kneubuehl dar.

9.1 Gebüsch

Das Gebüsch wurde durch Buchenstäbe im Durchmesser von 6 mm dargestellt und beschossen. Die zu erwartenden Ablenkungen stuften wir auf Grund der Stoßgesetze als gering ein. Die Ergebnisse bestätigten die Richtigkeit dieser Annahme. Folgende pauschale Beurteilungen können durch die Ergebnisse belegt werden:

- Vergrößert sich der Durchmesser und die Masse der Geschosse, so verringert sich die Ablenkung.
- Sinkt die Zielgeschwindigkeit der Geschosse, nimmt die Ablenkung zu.
- Nach Berührung mit dem Gebüsch ist der Ablenkwinkel zur Höhe meist größer als der zur Seite.

Es war zu beobachten, dass die Geschosse, die den Stab links berührten, zumeist nach rechts oben ablenkten und die Geschosse, die den Stab rechts streiften, nach links unten abgelenkt wurden. So lagen die meisten Treffer im ersten und dritten Quadranten.
Die Ablenkinkel haben bei einer Schussentfernung von 50 m kaliberabhängig einen maximalen Wert von:

- Kaliber .243 Win.: 1,15°
- Kaliber .308 Win.: 0,58°
- Kaliber 9,3x74 R: 0,41°.

Diese Werte wurden mit Kategorie 1 und 2 erzielt. Bei Treffern der Kategorie 3 (über 50% des Stabquerschnittes waren zerstört) kam es kaum zu nennenswerten Ablenkungen. Die Treffer lagen meist im Bereich des Koordinatenursprungs.

Als Ausnahme kann hier das Geschoss „A“ genannt werden, bei dem eine fast ausschließlich senkrechte Ablenkung zu verzeichnen war.

Wir stellten fest, dass jedes Geschoss für sich gleichmäßig reagierte und die Treffer nach der Ablenkung oft sehr eng beieinander lagen. Materialabhängige Unterschiede waren nicht auffällig, wohl aber formabhängige.

9.2 Baumstamm

Das Beschussmedium „Baumstamm“ war sehr aufwändig zu schießen, obwohl schon im Vorfeld zwei Veränderungen in der Versuchsplanung vorgenommen wurden. Dazu gehörten:

- die Änderung der zu schießenden Winkel - Streichung von 2,5° und 5° und Hinzunahme von 45° und 90° - und
- die Schaffung eines Toleranzfeldes von ±2,5° um den Auftreffwinkel.

Trotzdem blieb das größte Problem immer das Treffen des Baumstammes unter einem vorgegebenen Winkel. Die Auftreffwinkel von 10° und 15° zu erreichen, unter Berücksichtigung der Eigenpräzision des Beschusslaufes und der Streuung des Lasers auf eine Entfernung von 50 m war oft eine Herausforderung. Um das an einem Beispiel zu erläutern:

Um einen Auftreffwinkel von 10° zu realisieren, durfte der Baumstamm vom Geschoss nur bis ca. 2 mm Tiefe an der Rinde getroffen werden. Für einen Auftreffwinkel von 2,5° und 5° wären Treffer an der Rinde nur bis zu einer Tiefe von 0,2 mm bis 0,7 mm notwendig gewesen. Aus diesem Grund wurde auf diese kleinen Winkel verzichtet. Bei einem Streukreis des Laufes von etwa einem Zentimeter und dem Durchmesser des Laserpunktes auf Zielentfernung von ebenfalls etwas mehr als einem Zentimeter war das punktgenaue Treffen nur mit erhöhter Schussanzahl möglich. Selbst bei genauerer Ausrichtung des Lasers am Baumstamm kam dann noch eine weitere Komponente hinzu - die natürlich gewachsene Oberfläche (Rinde) des Baumes. Auch sie begünstigte oder verhinderte einen vorher genau definierten Treffpunkt.

Spuren/ Aufrisse am Baumstamm

Die am Baumstamm verursachten Beschädigungen lassen bedingt einen Rück schluss auf den möglichen Auftreffwinkel zu. Der Geschossaufbau und das verwendete Material spielen bei den Winkeln bis 25° eine eher untergeordnete Rolle. Anhand folgender Beispiel soll dies verdeutlicht werden:
Ergebnisse

Auftreffwinkel 25°

Das Geschoss „C“ wurde mittels Hammer und Stechbeitel freigelegt.

Auftreffwinkel 45°

Das Geschoss „C“ wurde mittels Hammer und Stechbeitel freigelegt.

Auftreffwinkel 90°

Das Geschoss „F“ konnte durch vorsichtiges Aufbrechen der herausgeschnittenen Stammscheibe sichtbar gemacht werden.
Ergebnisse

Auftreffwinkel 90°
Das Geschoss „A“ hinterließ einen deutlichen Bleiabrieb im Holz.

Die Geschosse verhielten sich wie folgt:

Kaliber .243 Win. - Entfernung 50 m:
- Geschoss „A“: ab 45° - kein Durchschuss (ab 15° weniger als 50% Restmasse)
- Geschoss „B“: alle durchgeschossen
- Geschoss „C“: ab 45° - kein Durchschuss (weniger als 50% Restmasse)
- Geschoss „D“: ab 90° - kein Durchschuss
- Geschoss „E“: ab 90° - vereinzelt kein Durchschuss
- Geschoss „F“: ab 45° - vereinzelt kein Durchschuss

Kaliber .308 Win. - Entfernung 25 m:
- Geschoss „A“: ab 25° - kein Durchschuss (ab 25° weniger als 50% Restmasse)
- Geschoss „B“: alle durchgeschossen
- Geschoss „C“: ab 45° - vereinzelt kein Durchschuss
- Geschoss „D“: alle durchgeschossen
- Geschoss „E“: alle durchgeschossen
- Geschoss „F“: alle durchgeschossen
Ergebnisse

Kaliber .308 Win. - Entfernung 50 m:

Geschoss „A“: ab 25° kein Durchschuss (ab 15° weniger als 50% Restmasse)
Geschoss „B“: alle durchgeschossen
Geschoss „C“: ab 45° vereinzelt kein Durchschuss
Geschoss „D“: alle durchgeschossen
Geschoss „E“: ab 90° vereinzelt kein Durchschuss
Geschoss „F“: alle durchgeschossen

Kaliber .308 Win. - Entfernung 100 m:

Geschoss „A“: ab 25° kein Durchschuss (ab 25° weniger als 50% Restmasse)
Geschoss „B“: alle durchgeschossen
Geschoss „C“: ab 90° vereinzelt kein Durchschuss
Geschoss „D“: alle durchgeschossen
Geschoss „E“: ab 45° vereinzelt kein Durchschuss
Geschoss „F“: ab 90° kein Durchschuss

Kaliber 9,3x74 R - Entfernung 50 m:

Geschoss „A“: nicht geprüft
Geschoss „B“: alle durchgeschossen
Geschoss „C“: nicht geprüft
Geschoss „D“: nicht geprüft
Geschoss „E“: ab 90° vereinzelt kein Durchschuss
Geschoss „F“: nicht geprüft

Es gab keinen Durchschuss bei Baumstämmen mit einem Durchmesser größer als 300 mm und einem Auftreffwinkel von 90°.

Geschossmassen

Beim Beschuss „Baumstamm“ wurde erstmalig die Festlegung zum Ansatz gebracht, dass ein Versuch beendet wird, wenn die Geschossmasse dauerhaft unter 50% der Ausgangsmasse sinkt.

<table>
<thead>
<tr>
<th>Kaliber .243 Win. - 50 m - (Geschossmassen in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>10°</td>
</tr>
<tr>
<td>15°</td>
</tr>
<tr>
<td>25°</td>
</tr>
<tr>
<td>45°</td>
</tr>
<tr>
<td>90°</td>
</tr>
</tbody>
</table>
Ergebnisse

Kaliber .308 Win. - 25 m - (Geschossmassen in %)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>93,7</td>
<td>90,0</td>
<td>100,0</td>
<td>99,2</td>
<td>99,9</td>
<td>98,0</td>
</tr>
<tr>
<td>15°</td>
<td>46,1</td>
<td>62,7</td>
<td>97,7</td>
<td>95,3</td>
<td>84,6</td>
<td>97,4</td>
</tr>
<tr>
<td>25°</td>
<td>23,4</td>
<td>57,7</td>
<td>82,7</td>
<td>93,4</td>
<td>74,4</td>
<td>98,7</td>
</tr>
<tr>
<td>45°</td>
<td>59,7</td>
<td>80,1</td>
<td>91,6</td>
<td>73,2</td>
<td>99,2</td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>69,4</td>
<td>83,6</td>
<td>99,4</td>
<td>73,1</td>
<td>99,3</td>
<td></td>
</tr>
</tbody>
</table>

Kaliber .308 Win. - 50 m - (Geschossmassen in %)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>95,2</td>
<td>72,5</td>
<td>100</td>
<td>100</td>
<td>99,9</td>
<td>99,7</td>
</tr>
<tr>
<td>15°</td>
<td>75</td>
<td>55,1</td>
<td>97,5</td>
<td>95,4</td>
<td>76,7</td>
<td>99,1</td>
</tr>
<tr>
<td>25°</td>
<td>20,7</td>
<td>57</td>
<td>88,1</td>
<td>84</td>
<td>73,1</td>
<td>98,6</td>
</tr>
<tr>
<td>45°</td>
<td>59,2</td>
<td>79,9</td>
<td>99,4</td>
<td>73,6</td>
<td>98,7</td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>66,4</td>
<td>86,5</td>
<td>99,3</td>
<td>72,7</td>
<td>99,4</td>
<td></td>
</tr>
</tbody>
</table>

Kaliber .308 Win. - 100 m - (Geschossmassen in %)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>98,5</td>
<td>89,6</td>
<td>100,0</td>
<td>99,8</td>
<td>99,9</td>
<td>99,5</td>
</tr>
<tr>
<td>15°</td>
<td>72,7</td>
<td>62,2</td>
<td>97,7</td>
<td>99,1</td>
<td>88,9</td>
<td>99,3</td>
</tr>
<tr>
<td>25°</td>
<td>41,5</td>
<td>58,4</td>
<td>90,7</td>
<td>98,8</td>
<td>74,4</td>
<td>99,3</td>
</tr>
<tr>
<td>45°</td>
<td>60,4</td>
<td>82,9</td>
<td>99,2</td>
<td>70,6</td>
<td>99,2</td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>61,0</td>
<td>90,0</td>
<td>99,1</td>
<td>Durchschuss</td>
<td>Durchschuss</td>
<td></td>
</tr>
</tbody>
</table>

Kaliber 9,3x74 R- 50 m - (Geschossmassen in %)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>95,5</td>
<td>95,5</td>
<td>99,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15°</td>
<td>82,1</td>
<td>99,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°</td>
<td>74,3</td>
<td>98,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>74,3</td>
<td>99,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>76,3</td>
<td>99,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geschossdeformationen

Die Geschossdeformationen ließen in vielen Fällen Rückschlüsse auf einen möglichen Auftreffwinkel zu. Es war erstaunlich, in welchem Maße sich die Geschosse, bis auf einige wenige Ausnahmen, nach dem Aufprall in der Deformation ähnelten. Damit könnten bei Untersuchungen zu Unfallhergängen wichtige Indizien gewonnen werden, aus welcher Richtung ein möglicher Schuss abgegeben worden ist. Von allen Geschossen wurden beispielhaft im Kaliber .308 Win. für jeden Winkel ausgewählt:

Geschoss „A“:

Da eine vollständige Zerlegung schon bei 15° bzw. 25° erreicht wurde, gibt es keine Beispiele für größere Winkel.

Geschoss „B“:
Geschoss „C“:
Ergebnisse

Geschoss „D“:

Geschoss „E“:
Ergebnisse

Geschoss „F“:

Baumstamm 100 m
\(\alpha = 10^\circ \)
.308 Win.
F
13

Baumstamm 100 m
\(\alpha = 15^\circ \)
.308 Win.
F
5

Baumstamm 100 m
\(\alpha = 25^\circ \)
.308 Win.
F
14

Baumstamm 100 m
\(\alpha = 45^\circ \)
.308 Win.
F
19

Baumstamm 50 m
\(\alpha = 90^\circ \)
.308 Win.
F
25

Baumstamm 50 m
\(\alpha = 45^\circ \)
.308 Win.
E
22

Baumstamm 50 m
\(\alpha = 90^\circ \)
.308 Win.
E
26

Vergleich von Indikatorwänden

- Kaliber .308 Win. - Geschoss „A“ - Entfernung: 25 m

- Kaliber .308 Win. - Geschoss „A“ - Entfernung: 50 m
Ergebnisse

- Kaliber .308 Win. - Geschoss „A“ - Entfernung: 100 m

- Kaliber .308 Win. - Geschoss „B“ - Entfernung: 25 m
Ergebnisse

- Kaliber .308 Win. - Geschoss „B“ - Entfernung: 50 m

- Kaliber .308 Win. - Geschoss „B“ - Entfernung: 100 m
- Kaliber .308 Win. - Geschoss „C“ - Entfernung: 25 m

- Kaliber .308 Win. - Geschoss „C“ - Entfernung: 50 m
9.3 Rückpraller

Um die gleich bleibende Beschaffenheit der Seifenblöcke für die Untersuchung zu überprüfen und zu gewährleisten, wird vor dem Beschuss mit einem Luftgewehr (mit einer Mündungsgeschwindigkeit von 300 m/s) aus Nahdistanz auf den Block geschossen. Die gemessene Eindringtiefe soll sich nach Angaben von Dr. Kneubuehl in einem Bereich von 90 mm bis 100 mm bewegen. In unseren gesamten Versuchen wurden Tiefen von 88 mm bis 97 mm erreicht. Das spricht für eine gute Konsistenz aller Seifenblöcke. Im Anhang sind die gemessenen Werte in Tabellenform ersichtlich.

Die vom Projektrat geforderte Energieermittlung der Geschosse nach Austritt aus der Seife ergab folgende durchschnittlichen Werte:

<table>
<thead>
<tr>
<th>Geschoss</th>
<th>Restmasse (%)</th>
<th>Restgeschwindigkeit (m/s)</th>
<th>Restenergie (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>„A“</td>
<td>58,2</td>
<td>136</td>
<td>59,3</td>
</tr>
<tr>
<td>„B“</td>
<td>57,5</td>
<td>292</td>
<td>261,5</td>
</tr>
<tr>
<td>„C“</td>
<td>91,0</td>
<td>208</td>
<td>250,8</td>
</tr>
<tr>
<td>„D“</td>
<td>99,6</td>
<td>367</td>
<td>720,2</td>
</tr>
<tr>
<td>„E“</td>
<td>72,6</td>
<td>411</td>
<td>654,0</td>
</tr>
<tr>
<td>„F“</td>
<td>99,2</td>
<td>217</td>
<td>259,5</td>
</tr>
</tbody>
</table>
Die Restenergie wurde nach einem Verfahren ermittelt, welches die DEVA schon in vorangegangenen Forschungsvorhaben angewandt hat. Es basiert auf folgendem Ablauf:

1. Der beschossene Seifenblock wurde mittig im Schussskanal aufgeschnitten, beschriftet und fotografiert.

3. Das Volumen wurde mit einer Bildbearbeitungssoftware vermessen. Dies geschah durch Einteilung des Hohlraumes in einzelne, dünne Kegelstumpfabschnitte (schwarze Linien), deren Volumen sich durch die nachfolgende mathematische Beziehung berechnet:
Ergebnisse

\[V_{\text{Kegelstumpf},i} = \frac{L_{\text{Kegelstumpf},i}}{3} \pi \left(r^2 + rR + R^2 \right) \quad [cm^3] \]

Der durch den Beschuss entstandene Hohlraum berechnet sich somit durch Aufsummierung der Volumina der einzelnen Kegelstümpfe, die zusammen den Schusskanal bilden.

\[V_{\text{Schusskanal}} = \sum_{i=1}^{n} V_{\text{Kegelstumpf}(i)} \quad [cm^3] \]

Das abgefeuerte Geschoss mit der Masse \(m \) erreicht den Seifenblock mit der Zielgeschwindigkeit \(v_{\text{Ziel}} \) und der daraus resultierenden Zielenergie \(E_{\text{Ziel}} \), die sich berechnet nach:

\[E_{\text{Ziel}} = \frac{1}{2000} m \cdot v_{\text{Ziel}}^2 \quad [J] \]

Analog dazu berechnet sich die Restenergie des Geschosses \(E_{\text{Rest}} \) mit der Restmasse \(m_R \) und der Geschwindigkeit \(v_{\text{Rest}} \) beim Austritt aus dem Seifenblock zu:

\[E_{\text{Rest}} = \frac{1}{2000} m_R v_{\text{Rest}}^2 \quad [J] \]

Die an den Seifenblock abgegebene Energie \(E_{\text{ab}} \) ergibt sich aus:

\[E_{\text{ab}} = E_{\text{Ziel}} - E_{\text{Rest}} \quad [J] \]

Die gesamten Protokolle befinden sich im Anhang.
9.3.1 Rückpraller am Baumstamm

Die Vorgabe für diesen Versuch lautete, dass das Geschoss nach dem Durchdringen des Seifenblockes möglichst senkrecht auf den Baumstamm auftreffen sollte, um dann einen Rückpraller zu simulieren. Die Ergebnisse sind in nachfolgender Tabelle zusammengefasst:

<table>
<thead>
<tr>
<th>Baumstamm</th>
<th>Geschoss</th>
<th>Ausgangsmasse [g]</th>
<th>Geschossrestmasse [g]</th>
<th>Rückprallweite [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>„A“</td>
<td>10,7</td>
<td>Steckschuss</td>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td>„B“</td>
<td>10,7</td>
<td>Steckschuss</td>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td>„C“</td>
<td>10,7</td>
<td>Steckschuss</td>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td>„D“</td>
<td>10,7</td>
<td>Steckschuss</td>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td>„E“</td>
<td>10,7</td>
<td>Steckschuss</td>
<td></td>
<td>0,00</td>
</tr>
<tr>
<td>„F“</td>
<td>11,0</td>
<td>Steckschuss</td>
<td></td>
<td>0,00</td>
</tr>
</tbody>
</table>

Nach der Durchführung dieser Versuchseinheit stellten wir fest, dass:

- kein Geschoss am Baumstamm zurückgeprallt ist und
- alle Projektil oder ihre Reste im Baumstamm stecken geblieben sind.

9.3.2 Rückpraller am Stein

Im Gegensatz zum „Baumstamm“ konnten hier Rückpraller festgestellt werden. Allerdings waren die Energien und Rückprallweiten nach dem Aufprall sehr gering. In tabellarischer Form auch hier die Ergebnisse:

<table>
<thead>
<tr>
<th>Stein</th>
<th>Geschoss</th>
<th>Ausgangsmasse [g]</th>
<th>Geschossrestmasse % der Ausgangsmasse</th>
<th>Rückprallweite [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>„A“</td>
<td>10,7</td>
<td>2,13 - 4,76</td>
<td>44,49</td>
<td>0,2 (vor Stein am Boden)</td>
</tr>
<tr>
<td>„B“</td>
<td>10,7</td>
<td>2,19 - 5,81</td>
<td>54,30</td>
<td>1,00 (in Indexwand)</td>
</tr>
<tr>
<td>„C“</td>
<td>10,7</td>
<td>5,58 - 7,84</td>
<td>73,27</td>
<td>1,30 (am Boden bis max.)</td>
</tr>
<tr>
<td>„D“</td>
<td>10,7</td>
<td>10,00 - 10,68</td>
<td>99,81</td>
<td>1,00 - 1,87</td>
</tr>
<tr>
<td>„E“</td>
<td>10,7</td>
<td>6,40 - 7,82</td>
<td>73,08</td>
<td>1,87 - 6,93</td>
</tr>
<tr>
<td>„F“</td>
<td>11,0</td>
<td>10,44 - 10,92</td>
<td>99,27</td>
<td>1,52 - 12,38</td>
</tr>
</tbody>
</table>
Ergebnisse

Diagramm zu Geschossrestmassen:

Diagramm zu maximalen Rückprallweiten:
Ergebnisse

Bilder der Geschosskavernen

Der Einschuss ist immer auf der linken Seite, der Geschossaustritt rechts.

Geschoss „A“:

Geschoss „B“:
Ergebnisse

Geschoss „C“:

Das hinein gesaugte Seifenmaterial auf der rechten Seite ist eine Folge des Unterdruckes beim Geschossdurchgang.

Geschoss „D“:

Das hinein gesaugte Seifenmaterial auf der rechten Seite ist eine Folge des Unterdruckes beim Geschossdurchgang.
Ergebnisse

Geschoss „E“:

Der Pfeil zeigt auf ein Sekundärgeschoss.

Geschoss „F“:

Alle Aufnahmen sind etwa im selben Maßstab. Deutlich sind die Unterschiede in der Größe der Wundkavernen ersichtlich und damit auch die Energieabgabe in Abhän-
gigkeit zur Auftreffenergie der jeweiligen Geschosse.
Nachfolgend sind die Geschossreste nach dem Aufprall auf den Stein anhand eines Beispiels pro Geschoss aufgeführt.

Geschoss „A“:

![Geschoss „A“](image1)

Geschoss „B“:

![Geschoss „B“](image2)

Geschoss „C“:

![Geschoss „C“](image3)

Geschoss „D“:

![Geschoss „D“](image4)

Geschoss „E“:

![Geschoss „E“](image5)

Geschoss „F“:

![Geschoss „F“](image6)
9.4 Harter Boden

An dieser Stelle möchten wir uns nochmals für die sehr gute Zusammenarbeit mit der Wehrtechnischen Dienststelle der Bundeswehr in Meppen bedanken.

Wir verzeichneten in Meppen die größten Ablagen auf kürzeste Entfernungen, so dass der Geschossfang mehrfach umgebaut werden musste, um die Geschossreste überhaupt fangen zu können. Häufig waren die abgeprallten Reste zwar noch auf der Indikatorwand zu finden, aber auf Grund des großen Ablenkwinkels trafen diese nicht mehr die Kisten. Durch einen Deckenaufbau (12 Decken, die in doppelter Lage aufgehängt wurden) konnte dieses Problem meist gelöst werden. Gute Penetratoren, wie die Geschosse „D“ und „E“ und die Versuche im Kaliber 9,3 x 74 R verlangten einen anderen Aufbau. Hier mussten zuerst die Wattekästen hinter der Indikator wand aufgebaut werden, um so viel wie möglich Energie abzubauen, um sie danach mit den Decken vollständig abzubremsen.

Ergebnisse im Kaliber .243 Win.

Geschoss „A“: Die Restmasse der größten Geschossreste hatten schon bei einem Winkel von 2,5° weniger als 50%. Trotzdem haben wir jeweils 3 Wertungsschüsse auch im Winkel von 5° und 10°, um Zufälligkeiten auszuschließen. Aber auch hier kein anderes Ergebnis.

Geschoss „C“: Mit steigendem Auftreffwinkel nahm die Geschossrestmasse stetig ab. Trotz gebondetem Kern betrug die durchschnittliche Geschossrestmasse bei einem Auftreffwinkel von 2,5° schon weniger als 50%. Auch hier haben wir bis 10° weiter geschossen.
Ergebnisse

Geschoss „F“: Mit steigendem Winkel wurde die Geschossrestmasse stetig geringer, aber blieb immer über 50%.

Ergebnisse im Kaliber .308 Win.

Ein wesentlicher Aspekt bei der Ergebnisbetrachtung ist der Geschwindigkeitsverlauf und die Geschossmasse in Abhängigkeit des Auftreffwinkels.

83
Im folgenden Diagramm sind Geschwindigkeiten aller Geschosse dargestellt.

Die sich daraus ergebenden Energiwerte verhalten sich entsprechend der Geschossrestmasse und Geschossgeschwindigkeit.

Auffällig ist, bis auf Ausnahme des Geschosses „D“, der annähernd gleich bleibende, konstante Abfall der Energiewerte mit der Vergrößerung des Auftreffwinkels.

Geschoss „A“:

Geschoss „B“:

Geschoss „C“:
Ergebnisse

Geschoss „D“:

Harter Boden 50 m
α = 2,5°
.308 Win.
D 1

Harter Boden 50 m
α = 5°
.308 Win.
D 2

Harter Boden 50 m
α = 10°
.308 Win.
D 2

Harter Boden 50 m
α = 15°
.308 Win.
D 2

Geschoss „E“:

Harter Boden 50 m
α = 2,5°
.308 Win.
E 6

Harter Boden 50 m
α = 5°
.308 Win.
E 2

Harter Boden 50 m
α = 10°
.308 Win.
E 1

Harter Boden 50 m
α = 15°
.308 Win.
E 1

Geschoss F:

Harter Boden 50 m
α = 2,5°
.308 Win.
F 4

Harter Boden 50 m
α = 5°
.308 Win.
F 3

Harter Boden 50 m
α = 10°
.308 Win.
F 5

Harter Boden 50 m
α = 15°
.308 Win.
F 1
Ergebnisse im Kaliber 9,3x74 R

Tendenzial bestätigen die Ergebnisse im Kaliber 9,3x74 R die vorangegangenen im Beschussmedium „Harter Boden“. In tabellarischer Form sind diese nachfolgend dargestellt.

Auftreffwinkel zur Geschossmasse in %:

<table>
<thead>
<tr>
<th>Auftreffwinkel</th>
<th>„B“</th>
<th>„D“</th>
<th>„E“</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5°</td>
<td>72,7</td>
<td>98,7</td>
<td>98,3</td>
</tr>
<tr>
<td>5°</td>
<td>67,4</td>
<td>97,8</td>
<td>98,3</td>
</tr>
<tr>
<td>10°</td>
<td>53,9</td>
<td>95,9</td>
<td>96,9</td>
</tr>
<tr>
<td>15°</td>
<td>46,9</td>
<td>97,3</td>
<td>83,7</td>
</tr>
</tbody>
</table>

Auftreffwinkel zur Abprallgeschwindigkeit in m/s:

<table>
<thead>
<tr>
<th>Auftreffwinkel</th>
<th>„B“</th>
<th>„D“</th>
<th>„E“</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5°</td>
<td>509</td>
<td>548</td>
<td>602</td>
</tr>
<tr>
<td>5°</td>
<td>429</td>
<td>504</td>
<td>591</td>
</tr>
<tr>
<td>10°</td>
<td>226</td>
<td>367</td>
<td>330</td>
</tr>
<tr>
<td>15°</td>
<td>304</td>
<td>412</td>
<td></td>
</tr>
</tbody>
</table>

Auftreffwinkel zur Restenergie in Joule:

<table>
<thead>
<tr>
<th>Auftreffwinkel</th>
<th>„B“</th>
<th>„D“</th>
<th>„E“</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5°</td>
<td>1895</td>
<td>2.758</td>
<td>2532</td>
</tr>
<tr>
<td>5°</td>
<td>1238</td>
<td>2352</td>
<td>2454</td>
</tr>
<tr>
<td>10°</td>
<td>291</td>
<td>1275</td>
<td>880</td>
</tr>
<tr>
<td>15°</td>
<td>539</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Radarmessungen bis 300 m an den in Meppen eingesetzten Geschossen

Auf Anregung des Projektrates wurden die Flugbahnen der für Meppen ausgewählten Geschosse mittels Radar erfasst und deren Geschwindigkeit in Abständen von 50 m erfasst. Die Gesamtstrecke betrug 280 m. Leider war es für diese Entfernung nicht möglich, alle Geschosse zu erfassen. Am auffälligsten verhielt sich das Geschoss „E“ im Kaliber .308 Win.. Trotz aller Bemühungen konnte das Radar diesem Geschoss nur bis zu einer Entfernung von 100 m folgen. Die Gründe sind im steilen Heckkonus zu suchen, weil die für das Radar notwendige Querschnittsfläche offensichtlich zu gering war.
Ergebnisse

Im Kaliber .243 Win. und im Kaliber 9,3x74 R fehlten jeweils 3 Geschosse. Da die Anregung des Projektrates erst während des Treffens in Meppen erfolgte, hatten wir auf Grund der bereits in unserem Institut getroffenen Vorauswahl diese nicht laboriert und auch nicht mitgenommen.

Die gesamten Messergebnisse befinden sich im Anhang.

9.5 Steinplatte

Aber auch die Geschosse „E“ und „F“ verhielten sich im Kaliber .308 Win. bei einem Auftreffwinkel von 2,5° und einer Schussentfernung von 50 m wie die oben genannten.

Während der Versuche mit der „Steinplatte“ konnte bei einem Winkel von 2,5° und dem Geschoss „D“ eine Doppelspur registriert werden. Das heißt, dass das auftreffende Projektil die Steinplatte zweimal hintereinander berührte. Dieses Phänomen ist bereits von Dr. Kneubuehl im Zusammenhang mit der Klärung eines Falles be-
Ergebnisse

schrieben worden, indem es um die tatsächlich abgegebene Schusszahl ging. Es ist also möglich und während des Forschungsvorhabens erneut bestätigt worden, dass ein Geschoss unter den oben beschriebenen Bedingungen zwei Spuren auf einem flach gehaltenen Beschussmedium hinterlassen kann. Im Bild unten ist zusätzlich ein Maßstab verwendet worden, der die Dimension des Spurabstandes zeigt.

Dieser Fall ist umso interessanter, da es sich nicht um eine plan geschliffene Oberfläche handelte, sondern um eine natürlich rauhe.

Im Verlauf der Versuche wurde deutlich, dass sich konstruktive und materialabhängige Unterschiede im Gesamtbild bemerkbar machten. In folgenden Darstellungen soll dies verdeutlicht werden.

Ein Vergleich aller Geschossmassen im Kaliber .308 Win. bei einem Auftreffwinkel von 10°, 15° und 25° (siehe Diagramm unten) zeigt, dass die bleifreien Geschosse einen großen Masseerhalt aufweisen.

Lediglich das gebondete, bleihaltige Geschoss „C“ kann bis zu einem Winkel von 15° auf eine ähnliche Massekonstanz verweisen.
Interessant ist auch die Entwicklung der Energiewerte der einzelnen Geschosse bezogen auf den Auftreffwinkel. Diese ist im folgenden Diagramm ablesbar.

Nachfolgend wurden im Kaliber .308 Win. repräsentative Geschosse ausgewählt für die Darstellung der winkelabhängigen Verformung.
Ergebnisse

Geschoss „A“:

Steinplatte
50 m
\(\alpha = 2,5^\circ \)

.308 Win.

A

5

Steinplatte
50 m
\(\alpha = 5^\circ \)

.308 Win.

A

1

Steinplatte
50 m
\(\alpha = 10^\circ \)

.308 Win.

A

4

Steinplatte
50 m
\(\alpha = 15^\circ \)

.308 Win.

A

2

Geschoss „B“:

Steinplatte
50 m
\(\alpha = 2,5^\circ \)

.308 Win.

B

5

Steinplatte
50 m
\(\alpha = 5^\circ \)

.308 Win.

B

2

Steinplatte
50 m
\(\alpha = 10^\circ \)

.308 Win.

B

2
Ergebnisse

Steinplatte
50 m
\(\alpha = 15^\circ \)

.308 Win.
B
3

Geschoss „C“:

Steinplatte
50 m
\(\alpha = 2,5^\circ \)

.308 Win.
C
1

Steinplatte
50 m
\(\alpha = 5^\circ \)

.308 Win.
C
6

Steinplatte
50 m
\(\alpha = 10^\circ \)

.308 Win.
C
6

Steinplatte
50 m
\(\alpha = 15^\circ \)

.308 Win.
C
4

Steinplatte
50 m
\(\alpha = 25^\circ \)

.308 Win.
C
2
Ergebnisse

Geschoss „D“:

Steinplatte 50 m
\[\alpha = 2,5^\circ \]
.308 Win.
D
6

Steinplatte 50 m
\[\alpha = 5^\circ \]
.308 Win.
D
3

Steinplatte 50 m
\[\alpha = 10^\circ \]
.308 Win.
D
4

Steinplatte 50 m
\[\alpha = 15^\circ \]
.308 Win.
D
4

Steinplatte 50 m
\[\alpha = 25^\circ \]
.308 Win.
D
2

Geschoss „E“:

Steinplatte 50 m
\[\alpha = 2,5^\circ \]
.308 Win.
E
1

Steinplatte 50 m
\[\alpha = 5^\circ \]
.308 Win.
E
2

Steinplatte 50 m
\[\alpha = 10^\circ \]
.308 Win.
E
2
Ergebnisse

Geschoss “F“:

<table>
<thead>
<tr>
<th>Steinplatte</th>
<th>.308 Win.</th>
<th>E</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 m</td>
<td>α = 15°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steinplatte</th>
<th>.308 Win.</th>
<th>F</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 m</td>
<td>α = 2,5°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steinplatte</th>
<th>.308 Win.</th>
<th>F</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 m</td>
<td>α = 5°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steinplatte</th>
<th>.308 Win.</th>
<th>F</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 m</td>
<td>α = 10°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steinplatte</th>
<th>.308 Win.</th>
<th>F</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 m</td>
<td>α = 15°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steinplatte</th>
<th>.308 Win.</th>
<th>F</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 m</td>
<td>α = 25°</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.6 Weicher Boden

Kaliber .243 Win.

Durchschnittliche Geschossrestmassen in % der Ausgangsmasse bei einer Schussentfernung von 50 m:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5°</td>
<td>27,0</td>
<td>34,6</td>
<td>31,3</td>
<td>96,8</td>
<td>95,4</td>
<td>94,5</td>
</tr>
<tr>
<td>5°</td>
<td>13,0</td>
<td>19,6</td>
<td>11,9</td>
<td>93,7</td>
<td>91,9</td>
<td>82,3</td>
</tr>
<tr>
<td>10°</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Deutlich sind die Masseverluste aller bleihaltigen („A“ bis „C“) und der relative Masseerhalt der bleifreien Geschosse („D“ bis „F“).
Mittlere Geschossrestenergien (Joule) bei einer Schussentfernung von 50 m:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5°</td>
<td>1</td>
<td>76</td>
<td>340</td>
<td>762</td>
<td>290</td>
<td>760</td>
</tr>
<tr>
<td>5°</td>
<td><1</td>
<td><1</td>
<td><1</td>
<td>368</td>
<td>937</td>
<td>606</td>
</tr>
<tr>
<td>10°</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Auffällig ist der Wert Geschoss „E“ bei einem Auftreffwinkel von 2,5°. In den im Anhang befindlichen Protokollen ist nachzulesen, dass lediglich bei Schuss Nr.2 eine hohe Abgangsgeschwindigkeit (738 m/s) gemessen werden konnte. Bei allen anderen Messwerten ist v_R kleiner als 25 m/s. Damit ergibt sich auch bei annähernd gleicher Restmasse der durchschnittlich geringere Wert der Restenergie. Der Grund für diese Abweichung ist für uns nicht nachvollziehbar.

Wie komplett sich ein Geschoss zerlegt, soll mit folgenden Bildern belegt werden. Im Bereich des Aufprallpunktes fanden wir vom Geschoss „C“ im Kaliber .243 Win. nur den unten im Bild festgehaltenen Rest.

Auf der Indikatorwand war außer anhaftendem Erdreich nicht ein Splitter des Geschosses zu finden.
Beim Schießen des 10°-Winkels konnten wir ein in der Indikatorwand stecken gebliebenes Geschoss fotografieren. Die Restenergie reichte nicht aus, selbige zu durchdringen.

Kaliber .308 Win.

Durchschnittliche Geschossrestmassen in % der Ausgangsmasse bei einer Schussentfernung von 50 m:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5°</td>
<td>40,8</td>
<td>35,1</td>
<td>95,0</td>
<td>99,1</td>
<td>99,2</td>
<td>98,7</td>
</tr>
<tr>
<td>5°</td>
<td>34,8</td>
<td>29,7</td>
<td>58,4</td>
<td>98,2</td>
<td>98,7</td>
<td>97,4</td>
</tr>
<tr>
<td>10°</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Mittlere Geschossrestenergien (Joule) bei einer Schussentfernung von 50 m:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5°</td>
<td>854</td>
<td>1057</td>
<td>2326</td>
<td>2933</td>
<td>2323</td>
<td>1639</td>
</tr>
<tr>
<td>5°</td>
<td>609</td>
<td>491</td>
<td>883</td>
<td>2370</td>
<td>1494</td>
<td>939</td>
</tr>
<tr>
<td>10°</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bei allen Geschossen verringern sich die Masse und die Geschossenergie beim Aufprall.

Während der Versuche wurden keine Besonderheiten im Kaliber .308 Win. festgestellt.
Ergebnisse

Kaliber 9,3x74 R

Durchschnittliche Geschossrestmassen in % der Ausgangsmasse bei einer Schussentfernung von 50 m:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5°</td>
<td>19,9</td>
<td>79,4</td>
<td>99,0</td>
<td>99,6</td>
<td>99,4</td>
<td>99,2</td>
</tr>
<tr>
<td>5°</td>
<td>25,2</td>
<td>62,5</td>
<td>56,4</td>
<td>98,4</td>
<td>96,1</td>
<td>96,1</td>
</tr>
<tr>
<td>10°</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Auffällig ist hier nur, dass die Geschossmasse nach dem Beschuss des Beschussmediums mit dem Geschoss „A“ beim Auftreffwinkel von 5° größer ist als bei 2,5°.

Mittlere Geschossrestenergien (Joule) bei einer Schussentfernung von 50 m:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5°</td>
<td>3</td>
<td>14</td>
<td>173</td>
<td>77</td>
<td>1848</td>
<td>1524</td>
</tr>
<tr>
<td>5°</td>
<td>154</td>
<td>857</td>
<td>-</td>
<td>766</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>10°</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Mit den folgenden Geschossabbildungen sollen beispielhaft für das Kaliber .308 Win. die Geschossdeformationen dokumentiert werden:

Geschoss „A“:

Weicher Boden 50 m α = 2,5°

.308 Win. A 2

Weicher Boden 50 m α = 5°

.308 Win. A 1

Im Winkel von 10° gab es keinen auffindbaren Restkörper.
Ergebnisse

Geschoss „B“:

- Weicher Boden
 - 50 m
 - $\alpha = 2,5^\circ$
 - .308 Win.
 - B
 - 4

- Weicher Boden
 - 50 m
 - $\alpha = 5^\circ$
 - .308 Win.
 - B
 - 2

- Weicher Boden
 - 50 m
 - $\alpha = 10^\circ$
 - .308 Win.
 - B
 - 1

Geschoss „C“:

- Weicher Boden
 - 50 m
 - $\alpha = 2,5^\circ$
 - .308 Win.
 - C
 - 3

- Weicher Boden
 - 50 m
 - $\alpha = 5^\circ$
 - .308 Win.
 - C
 - 1

- Weicher Boden
 - 50 m
 - $\alpha = 10^\circ$
 - .308 Win.
 - C
 - 1

Geschoss „D“:

- Weicher Boden
 - 50 m
 - $\alpha = 2,5^\circ$
 - .308 Win.
 - D
 - 5

- Weicher Boden
 - 50 m
 - $\alpha = 5^\circ$
 - .308 Win.
 - D
 - 1

- Weicher Boden
 - 50 m
 - $\alpha = 10^\circ$
 - .308 Win.
 - D
 - 1
Ergebnisse

Geschoss „E“:

<table>
<thead>
<tr>
<th>Geschoss Boden 50 m</th>
<th>Weicher Boden 50 m</th>
<th>Weicher Boden 50 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = 2,5^\circ)</td>
<td>(\alpha = 5^\circ)</td>
<td>(\alpha = 10^\circ)</td>
</tr>
</tbody>
</table>

.308 Win. E 4
.308 Win. E 6
.308 Win. E 1

Geschoss „F“:

<table>
<thead>
<tr>
<th>Geschoss Boden 50 m</th>
<th>Weicher Boden 50 m</th>
<th>Weicher Boden 50 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = 2,5^\circ)</td>
<td>(\alpha = 5^\circ)</td>
<td>(\alpha = 10^\circ)</td>
</tr>
</tbody>
</table>

.308 Win. F 2
.308 Win. F 2
.308 Win. F 1

Da alle Geschosse im Winkel von 10° sofort nach der Herausnahme aus dem Erdreich fotografiert wurden, sind auf den Bildern noch teilweise Anhaftungen des Be- schussmediums zu erkennen.
10. **Auswertung Dr. Kneubuehl**

Die Auswertung der von uns übermittelten Daten wird Dr. Kneubuehl in einem eigenen Bericht vornehmen und dem Auftraggeber zur Verfügung stellen. Sein Bericht ist Bestandteil der Gesamtberichterstattung.
11. Zusammenfassung

Innerhalb eines Jahres wurden über 2.500 Schüsse auf die unterschiedlichsten Medien abgegeben. Jeder der Mitarbeiter legte dabei über 250 Kilometer zurück.

Es hat sich letztlich gelohnt, weil mit diesem Forschungsvorhaben erstmalig das Abprallverhalten von Jagdmunition an naturnahen Medien erforscht werden konnte. Obwohl die bleihaltigen Geschosse schon seit über 100 Jahren eingesetzt werden, ist in diesem Umfang noch nie eine vergleichbare Untersuchung durchgeführt worden. Im direkten Vergleich ausgewählter Geschosse wurden nun Erkenntnisse über deren Verhalten gegenüber bleifreien Geschossen gewonnen.

Aus zeitlichen Gründen mussten während der Versuche Einschränkungen hinsichtlich der Schussentfernung und auch der Kaliber gemacht werden, weil nicht nur in der Bundesrepublik Deutschland dringend auf diese Ergebnisse gewartet wird. Sie ermöglichen Entscheidungen zum Einsatz bleihaltiger und bleifreier Munition. Alle Versuche wurden mit Akribie und hohem Aufwand vorbereitet, durchgeführt und ausgewertet.

Es war eine richtige Entscheidung, die Auswahl der Geschosse auf sechs zu beschränken. Hier wurden konstruktive Unterschiede wie Zerlegungs- und/oder Deformationsbereitschaft, Massestabilität, Material- und Formeigenschaften berücksichtigt. Bei leicht zu schießenden Medien wie dem Gebüsch und kleinen Winkeln wurde deutlich, dass hier nicht das Material (Blei oder bleifrei) ausschlaggebend für die Ablenkung war, sondern die Spitzenform (Ogive oder beispielsweise eckige Formen mit Scharfrand). In Bezug auf Masse- und Energiestabilität kristallisierten sich die bleifreien Geschosse als sehr stabil heraus.
12. Literaturverzeichnis

Nach intensiven Recherchen und Kontaktierung in- und ausländischer Fachleute ist festzustellen, dass es weltweit keine offiziell zugänglichen Untersuchungen gibt, die sich mit dem hier zu behandelnden Forschungsthema beschäftigt haben.

Zu Teilbereichen des Ablenkungsverhaltens von Geschossen (ausschließlich Bleikern oder militärische Hartkerngeschosse) gibt es entsprechende Untersuchungen.

Nachstehend sind auszugsweise Themen nationaler und internationaler Autoren angegeben, die sich mit dem Ablenkungsverhalten von Geschossen und Schrotten beschäftigen.

1. BIALONSKI H. G., Geschoßablenkung in homogenen Medien, I. D., Bonn, [1974]
3. HAAG L. C., Bullet Ricochet: An Imperical Study and a Device for Measuring Ricochet Angle, AFTE Journal, 21, 2, 182-188 [19871]
11. KNEUBUEHL B. P., Rikoschettversuche mit Colt Kal. .38 spez., GRD, TA 7, Thun, 7 S., [1980]
12. KNEUBUEHL B. P., MAISSEN E., Das Problem der Geschoßabpraller an Kanten und Prellschienen in 300 m Schiessständen, GRD, TA 7, Thun, 15 S., [1984]
13. KNEUBUEHL B. P., Untersuchung über den Rikoschettwinkel an Asphalt und Beton mit 7.62x39 mm Kalaschnikow Weichkern- und Hartkernmunition, GRD, FA 27, 3 S., [1991]

14. KNEUBUEHL B. P., Untersuchungen zum Abprallverhalten von Kurzwaffengeschossen, Bericht Nr. 1484, GR, FA 26, XX S., [1999]

15. KNEUBUEHL B. P., Das Abprallen von Geschossen aus forensischer Sicht [1999]

16. LÖCHER T., Der Büchsenschuß durch Hindernisse, Diplomarbeit, FH Weihenstephan, 103 S., [1996]

17. NUSSBAUMER N., Der Kugelschuß ins Gras und in Feldfrüchte, DWJ, 957-959, [1980]

18. REICHERT K. H., Geschoßablenkung durch Glasscheiben, I. D., Bonn, [1974]

